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ABSTRACT
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Achieving a consensus among a large number of nodes has always been a chal-

lenge for any decentralized system. Consensus algorithms are the building blocks

for any decentralized network that is susceptible to malicious activities from autho-

rized and unauthorized nodes. Proof-of-Work is one of the first modern approaches

to achieve at least a 51% consensus, and ever since many new consensus algorithms

have been introduced with different approaches of consensus achievement. These de-

centralized systems, also called blockchain systems, have been implemented in many

applications such as supply chains, medical industry, and authentication. However,

it is mostly used as a cryptocurrency foundation for token exchange. For these sys-

tems to operate properly, they are required to be robust, scalable, and secure. This

dissertation provides a different approach of using consensus algorithms for allowing

information sharing among nodes in a secured fashion while maintaining the secu-

rity and immutability of the consensus algorithm. The consensus algorithm proposed

in this dissertation utilizes a trust parameter to enforce cooperation, i.e., a trust

value is assigned to each node and it is monitored to prevent malicious activities

over time. This dissertation also proposes a new solution, named localized consensus,
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as a method that allows nodes in small groups to achieve consensus on information

that is only relevant to that small group of nodes, thus reducing the bandwidth of

the system. The proposed models can be practical solutions for immense and highly

dynamic environments with validation through trust and reputation values. Applica-

tion for such localized consensus can be communication among autonomous vehicles

where traffic data is relevant to only a small group of vehicles and not the entirety of

the system.
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CHAPTER 1

INTRODUCTION

This dissertation proposes two efficient and secured decentralized solutions for achiev-

ing a secured data transmission between users without the need for any central au-

thority. Given their decentralized, automated and organized fashion, these solutions

can be implemented in an autonomous units environment such as robotic swarms,

smart car communications and many more. This chapter covers the motivation and

contribution of the two solutions and illustrates the dissertation outline.

1.1 OVERVIEW

Blockchain technology is an immutable append-only ledger storing transactions in

a linked chain of individual blocks. Blockchain is one of the very first public data

structures that is fundamentally decentralized and is the underlying technology of

all cryptocurrencies. With blockchain, it is possible to achieve a consensus over

transactions on a distributed immutable ledger without the need of a trusted third

party. Trust is achieved by the reliability of the consensus algorithm, which serves

as the building blocks of different blockchain applications. Consensus algorithms

utilize different cryptography primitives to achieve consensus and trust among the

majority of users. Bitcoin, for example, is using the Proof-of-Work consensus and is

relying heavily on the SHA-256 hash function. Many also use digital signatures and

Diffie-Hellman key exchange.
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1.2 MOTIVATION AND CONTRIBUTION

Blockchain technology is mainly used for achieving consensus of transactions over

a shared ledger, making it ideal for cryptocurrency for its secured and immutable

nature. The primary objective of this work is to use the same blockchain technology to

solve the problem of secured and immutable communication in dynamic P2P networks

by developing a decentralized consensus protocol that can be implemented in real life

scenarios. The idea of using blockchain for information has been studied for some

time [5, 6] yet most implementations are using similar preexisted consensus algorithms

that can only validate transactions of tokens, currency.

This dissertation presents two unique consensus algorithms designed for secured

communication and validation in a dynamic environment with malicious activities.

The multi-layer design of these algorithms allow, for the first time, a validation of

environmental state, making it ideal for implementation in autonomous units such as

robotic swarms, smart vehicles, and more.

1.2.1 Overview

This dissertation addresses the need for decentralized solutions that can be used over

a dynamic environment for allowing immutable communication between nodes.

� Information sharing in the presence of adversarial nodes using raft [7]

paper is the first to propose a decentralized voting-based consensus algorithm

for information sharing on the blocks data layer. The proposed algorithm is

based on the classic Raft consensus algorithm and it includes trust value and

other cryptographic primitives such as digital signatures to achieve information

sharing protocol that can handle malicious nodes called ISRaft. This algorithm

can be implemented to improve the cooperation among parties in a resource-

constrained environment.
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� ISRaft consensus algorithm for autonomous units [8] builds upon the

previous paper, ISRaft for autonomous units improves the original design by

reducing the number of functions it requires and improving the overall security

of the algorithm. It then presents an implementation of the algorithm using

ARoS simulator software that can emulate a communication of autonomous

units in a predefined environment. This improved ISRaft is capable of achiev-

ing a consensus over the ’states’ of different environmental data points. For

example, this algorithm can achieve a consensus over the number of blocked

roads in a city, a number of high voltage hazards for robotic swarms deploy-

ment or other environmental states that are dynamically changed.

� Localized State-Change Consensus in Immense and Highly Dynamic

Environments [9], presents a new consensus algorithm called ’Localized State-

Change’, LSC for short, that is capable of achieving consensus by partitioning a

set of nodes into subgroups and and achieve what we called a ’localized consen-

sus’. The new algorithm is a voting based algorithm, similar to ISRaft, however

it uses localized consensus with validation through reputation value to achieve

a majority consensus over a highly dynamic environment. The simplicity of the

primitives used for this algorithm also makes it possible to be implemented in

resource-constrain devices such as autonomous systems to other devices that

communicate on the network. Validation and authenticity of information is

achieved by first initiating a local consensus using cryptographic communica-

tion means and reputation values. This can then be expanded to a global

consensus when the state-change has been verified. LSC assures confidentiality,

integrity and validity of messages on the blockchain among all agents.

The remainder of the chapter covers the different aspects of the contributions.
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1.2.2 Security

Security is one of the most important aspects of every technology, particularly the

technologies that are meant to provide an infrastructure for a public service. Blockchain

and cryptocurrencies are known to have security concerns. Different researches have

covered various aspects of blockchain and its associated vulnerabilities. Many of the

attacks presented in the dissertation, such as selfish mining and block withholding

have been studied extensively by many researchers while others such as routing at-

tack and pool hopping have been addressed and discussed more recently. We describe

these attacks, provide detection methods and countermeasures and we then utilize

this data to measure the security of our proposed consensus protocols. Some of these

solutions solely relied on game theoretic models while many others have been exam-

ined in a simulated or a real world situation. This dissertation presents two innovative

consensus algorithms with security implementations that can withstand most of the

covered attacks.

1.2.3 Information Sharing

Setting a communication channel of information sharing among a set of parties has

always been a security concern in the research community [10]. With the increasing

amount of information that is being shared worldwide as well as the technological

capabilities of adversaries, secure information sharing is essential nowadays. Current

centralized solutions may provide security for shared data as long as the centralized

authority is trusted. This, however, proved to be risky where centralized authorities

acted maliciously. The better-known examples are the Facebook scientific experiment

[11] and the government surveillance [12]. As such, decentralized solutions and imple-

mentations are becoming more common in many domains such as machine learning,

supply chain, and information sharing [13, 14, 15, 16]. The proposed consensus al-

gorithms are an improved modified version of the classic Raft consensus algorithm

4



that allows secure information sharing among a set of parties in the presence of ad-

versaries. The proposed models in this dissertation utilizes cryptographic primitives

such digital signature and trust parameters to enforce cooperation [17], i.e., a trust

value is assigned to individual nodes to prevent malicious activities over time. This

is a practical solution for autonomous units with resource-constrained devices where

a regular encrypted communication method can negatively affect the performance

of the entire system. This modification intends to further improve the security and

capabilities of the proposed consensus algorithms. Achieving a consensus for infor-

mation can also be referred to as ’information consensus’ and it is the underlying

technology of different blockchain communication protocols that are used for remote

communication, i.e., vehicle to vehicle (V2V) communication protocol. This is a

possible implementation of our proposed models as vehicles are getting smarter and

smarter and it is important for them to share information among each other such as

road condition, traffic and accidents [18]. Figure 1.1 shows an example of a futuristic

environment where vehicles and infrastructure can communicate with each other.

1.2.4 Localized Consensus

Localized consensus has been a concern in the blockchain community. Satoshi Nakamoto’s

invention of ’single CPU per single node’ (also called Proof-of-Work) is the most

known method for handling a consensus within such a dynamic environment. The

50% majority consensus is achieved by guaranteeing the difficulty of mining new

blocks using only brute-force calculations. This method, however, relies on the need

of at least 50% of the nodes achieving a consensus, which works great for cryptocur-

rency and token exchange applications. However, blockchain technology can be the

foundation of many other applications such as information sharing and data commu-

nications, where achieving 50% consensus is not required. A good example will be

terrain recognition for drones. In this scenario, assume a large group of autonomous

5



Figure 1.1: Vehicles exchanging information such as vehicle size, position, speed,

heading, etc. [18]

drones fly over a large field. At the corner of the terrain there is a large antenna that

is a hazard risk for the nearby drones. It is not necessary to achieve consensus among

at least 50% of the drones on the presence of the antenna, as it only affects a very

small percentage of drones that are flying near it. Thus, a ’localized consensus’ is re-

quired. This dissertation introduces an innovative way to handle localized consensus

in a highly dynamic environment for better communication and information sharing

between nodes.

1.3 DISSERTATION OUTLINE

The remainder of this dissertation is organized as follows. Chapter 2 covers the

background material of consensus algorithm technologies and methodologies used in

this dissertation. Chapter 3 presents ISRaft; the first information sharing consensus

6



algorithm and briefly discusses the possible implementations. Chapter 4 goes in depth

to possible implementations of ISRaft, specifically for Autonomous Units. 5 presents

the LSC, the localized-state-change consensus. Chapter 6 concludes the discussion

and presents avenues for future research.
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CHAPTER 2

BACKGROUND

2.1 PRELIMINARIES

2.1.1 Blockchain

As the name suggests, blockchain is a data-structure that holds data across multiple

blocks in a chain chain. This structure was first introduced in 1990 by Stuart Habert

and W.Scott Strornetta in [19] as a way to timestamp digital documents. The concept

was adopted by Satoshi Nakamoto, who put it into practice to facilitate transactions

of the virtual currency known as Bitcoin, where transactions are recorded on a contin-

uously expanding ledger across numerous blocks. Blockchain Technology is based on

the idea that each participant, or node, has access to an agreed upon shared ledger by

the consensus mechanism methodology. What differentiate blockchains from one an-

other is the underlying consensus algorithm it utilizes. The most common algorithm

is the Proof-of-Work (PoW) where nodes are required to ’solve’ a unique mathemat-

ical problem for them to be the winners thus mining the next block. All consensus

algorithms are based on the idea that at least 50% agreement is required for achieving

a consensus. Blockchains can have different permission levels [20]. Here are the three

common types:

1. Public Blockchain - A public Blockchain is permissionless, and anyone can

easily participate and validate the transactions. Transactions are public and

anonymous in the sense that only a wallet address is linked to any transaction.

This type of blockchain is usually maintained by the public community, which

means there is a higher level of trust. Bitcoin is the first example for a public

8



Blockchain.

2. Private Blockchain - A private Blockchain is a permissioned Blockchain cen-

tralized to one governing organization. Transactions are validated internally

and may or may not be publicly readable. Private blockchain requires a regis-

tration process for all users, assuring that transactions are backed by the users.

These blockchains, however, are considered to be less decentralized as there is

an organization that controls a lot of the data and is the one maintaining the

network.

3. Federated/Permissioned Blockchain - A federated blockchain is a permis-

sioned Blockchain similar to private blockchain, but it operates under the lead-

ership of a group often called the consortium. Predefined consortium nodes

control the consensus. The transactions may or may not be public.

The basic idea behind blockchain technology is that it allows parties to send and

receive digital assets (Usually referred to as digital currency) on the peer-to-peer net-

work that can then store the transactions on ”blocks” in a way that is shared across

the network. The user who initiated the transaction, the user receiving it and the

transaction data are all registered on this ”block”, or ledger by using public key en-

cryption and digital signatures. The next step is to validate the transaction on the

ledger, and this is done using what is called a ”consensus mechanism”. The technol-

ogy of Blockchain may vary but the basic idea remains the same - some consensus

mechanism is running in order to mine a new block in a decentralized fashion, while

the block is verified by the peers on the network. This technology, even with all of its

security achievements, is still exposed to different types of attacks on different levels

of its structure.

9



Figure 2.1: Example of a Blockchain network blocks [1]

2.1.2 Consensus Algorithm

Blockchain solutions do not require a third party trusted authority because they are

considered to be a decentralized system. Instead, blockchain uses a consensus method

to ensure the accuracy and consistency of data and transactions shared between

parties. There are many ways to achieve consensus on a Blockchain network. Proof-of-

Work (PoW) was presented in a 1993 journal [21]. This mechanism is used by Bitcoin

[22] and is the most mainstream Blockchain system today. The mining process is

based on electing a ’leader’ who will decide the content of the next block. Whenever a

new block is mined, the first miner to complete the mining process gets to be the leader

of the block. The elected leader is also responsible for broadcasting the block to the

network, so that other users (peers) can verify the validity of its content. Motivation

for mining is achieved in the form of currency (currency reward, transaction fees).

The most widely used proof-of-work scheme is based on SHA-256 and was introduced

as a part of Bitcoin and few other cryptocurrencies. This mechanism, however, has a

few problems. A big issue is that the mining process depends on the computational

power of the leader [23]. Another issue is that miners started to organize in groups

called ’mining pools’ where they combine their computational power, and then if they

create the next block, they distribute the award evenly across everyone in the pool.

Another very popular consensus mechanism in the Proof-of-Stake (PoS) [24]. This

method was first introduced in 2012 to address the first problem of PoW, which was

energy inefficiency. In Proof-of-Stake, every miner’s power is determined by the total

amount of currency coins he or she has. In this mechanism, an auction is carried out
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and whoever wins gets to be the miner. This means that a leader is being selected

based on his bid, or how much money he is willing to put ’at stake’ in order to win

the auction. Unlike PoW, in PoS, whenever a new block is mined, no new coins are

being distributed in the system. However, miners are rewarded with transaction fee

instead [25].

There are more consensus mechanisms that are being used for different Blockchain

networks such as Delegated-Proof-of-Stake (DPoS), Proof-of-Capacity (PoC), Proof-

of-Elapsed-Time (PoET).

2.1.3 Digital Signature

Definition 1 (Digital Signature) A triple of probabilistic polynomial time algorithms

(G,S, V ):

� (pk, sk)← G(1k): Key generator G takes a security parameter 1k as input; and

returns a secret key sk and a public key pk.

� q ← S(sk,m): Signing function S takes a signing key sk and a message m as

input; and it returns a signature q.

� 0/1 ← V (pk,m, q): Verify V is a deterministic algorithm that takes a public

key pk, message m and a signature q as input; and it returns 1 if q is valid and

0 otherwise

2.2 BLOCKCHAIN APPLICATIONS FOR AUTONOMOUS UNITS

Autonomous Units (AU) co-operation is the idea of self-organization, where its core

concept is the formation and development of order between units in a complex dy-

namic environment. Autonomous units, by definition, operate in a decentralized

fashion while making decisions in heterarchical structure (non-hierarchical). The ob-

jective of autonomous units is to achieve robustness and flexible coping with dynamics
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and complexity. Autonomous Units decision making concerns the possibility of units

to be able to change from one state to another. Autonomous units are constantly

exposed to malicious cyber attacks and different decentralized solutions have proven

to have issues with their scalability correlating to high latency. Also, communication

over traditional blockchains can only validate transaction data and not multiple-layers

of data shared between different users. As far as we know, there are no consensus

algorithms specifically designed to handle communication and validation between au-

tonomous units which can be used as a platform for other decentralized solutions in

different fields. This dissertation then proposes a consensus mechanism specifically

for achieving state-change consensus between autonomous units while maintaining the

security features of the original Raft. This new design can be defined as a Decen-

tralized Autonomous Units (DAU) consensus, which we named ’Localized-State

Change (LSC) algorithm’. This innovative design is intended to create potentially

infinite scalability, and process thousands of state-change transactions per second

even with a large number of users in the network. The design is also intended to

be implemented in resource-constrained devices, making it ideal for robotic swarms

or different DAO applications where users might have power limitations. Arriving

at such an algorithm required learning from other similar algorithms of blockchain

applications for autonomous units. some of which are:

Research papers [26, 27, 28] aim at finding a solution for reliable communica-

tion and decision-making among autonomous units because Byzantine units can have

disastrous effects on any autonomous technology. A blockchain approach utilizing

Proof-of-Work and other known protocols has been implemented for testing among

autonomous agents. By using blockchain, data can be stored in a safe way to pre-

vent unintended or malicious data changes by byzantine units present in the system.

Autonomous vehicles, swarm robotics and smart devices are good examples of au-

tonomous units that can benefit from the use of blockchain as a core part of their
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infrastructures.

Ferrer et al. [29] highlights the importance of swarm robotics and how the

blockchain can be utilized to further improve robotic technologies. Swarm robotics

can be seen as a kind of autonomous unit where the characteristics of swarms, such

as scalability and resistance to failure, have made swarm robotics appealing to many

researchers. However, swarm robotics have some drawbacks. Since swarms mainly

communicate through other neighboring robots, there is nothing that allows them to

have shared knowledge with other robots in the system. This is where the use of a

blockchain is beneficial, where global knowledge can be added to swarm robotics while

maintaining local knowledge. By implementing blockchain technologies in swarm

robotics, the security of these swarms can also be improved. The blockchain provides

reliable and safe communication among robots along with opportunities to validate

members of a swarm and prevent malicious attacks. Blockchain also allows for dis-

tributed decision-making in swarms. Processes such as voting and leader elections can

be implemented into swarms through decision-making that is made possible through

the use of a blockchain.

Strobel and Dorigo [30] designs a robotic swarm that defines which color is more

prevalent in an environment of both black-and-white tiles. The authors’ goal is to

determine the frequency of black tiles using a blockchain approach among robots,

instead of simply finding which color is more prevalent. Furthermore, a reputation

management system is added to manage the presence of byzantine robots. This

utilizes a smart contract where each robot’s reputation is stored on the blockchain.

The reputation of each robot is changed based on how they report the color of a

certain tile when the report is compared with other robots’ reports in the swarm.

When an individual robot reports an incorrect color, its reputation is decreased.

When a robot’s reputation value becomes very low, its votes are ignored. They then

run three separate experiments. The first one is to test if the correct frequency of tiles
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could be calculated without using reputation management. The second experiment is

to study the effects of the swarm on the blockchain and how efficient it will be. The

third experiment is to determine if byzantine robots will have an effect while using

the reputation management in the swarm. Overall, the results show that having

reputation management is effective in handling byzantine robots at a smaller scale.

Singh et al. [31] present an improved way of decision-making process of swarm

robotics by using a blockchain system. Currently, the ways that robots communicate

are too centralized and are not resource efficient since blockchains require a large

number of resources. In order to improve this, the authors propose to utilize Proof-

of-Authority (PoA) instead of the more common PoW. In PoA, certain nodes are

given the roles of validator. The validators manage and record transactions into

the blockchain, with the validator leader gaining the block-publishing priority. This

leader is changed after a set period. To verify this approach, a similar method to the

colored tiles is used. In a simulated environment, there are grey, white, and black

tiles. The robots emit red when on white tiles, green when on black tiles, and do

not respond to grey tiles. The objective is to have the robots decide which color tiles

emit each color of light. While this test does not consider the byzantine robots, the

authors show that it is effective and less resource-intensive compared to the normal

blockchain.

Queralta et al. [32] improve data sharing, resource utilization and communication

in swarm robotics by using blockchain technologies. They use the PoW consensus

protocol to measure the resources the system still has in order to provide proper

resource utilization. Moreover, the Proof-of-Stake (PoS) is used to validate transac-

tions due to the scalability issues when using PoW. They also use a Single Longevous

Blockchain that utilizes ad hoc collaboration in order to allow new nodes to enter

the system. This blockchain will also work in situations using permissioned or per-

missionless blockchains. In addition, a method of ranking is implemented by using
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smart contracts, which has resulted in certain robots having higher ranks than others.

These rankings are changed based on the needs of the system and will not be recorded

in the blockchain itself. Only the data that is validated is stored in the blockchain.

Despite the presence of the ranking system, the nodes are not chosen based on their

rankings or levels of trust, which provides protection for malicious nodes.

2.3 PROOF-BASED CONSENSUS ALGORITHMS

The next two sections cover a list of some known consensus algorithms separated into

two groups; proof-based and voting-based algorithms. The main difference between

the two is that the proof-based algorithms rely on providing some mathematical proof

to be eligible for mining blocks, while the voting-based algorithms rely on a voting

system where the node with the highest votes is usually the eligible miner.

2.3.1 Proof-of-Work

Proof-of-Work, also known as PoW, is perhaps the most popular consensus algorithm

that is currently being used by some of the most popular cryptocurrencies such as

Bitcoin, Litecoin, Dogecoin and Ethereum (Ethash). Introduced in 2008 by Satoshi

Nakamoto [22], Proof-of-Work uses computational power as a way to validate new

blocks on the blockchain through a consensus achieving process. Proof of Work uti-

lizes a cryptographic hashing algorithm that generates an almost-unique fixed length

output from any given length input and serves as a signature mechanism to authen-

ticate and validate blocks on the chain. When the time comes for a new block to be

mined, users on the network compete to find the new block’s hash value.

It also serves as the total block signature in the Proof-of-Work consensus mech-

anism. Each block contains information such as the block header, previous blocks’

hash, transactions and the nonce. The goal of the miner is to find the hash value of

a block that is smaller than a given value. It can also be seen as setting the first few
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bits of the hash value to 0. Finding a small enough hash value is considered to be

NP-Hard and can only be solved using brute-force which depends on the availabil-

ity of the miners computational power. Since the block header and the transactions

are publicly available, it also means that a solution is easily verifiable by the other

users, also called validators. Proof-of-Work offers a dynamic mining difficulty that

is based on the total computational power of the system, also called hashrate. This

value changes to maintain an expected block-mining rate per minute. In Bitcoin, for

example, the expected block mining rate is roughly one block every 10 minutes. This

value is often referred to as the ’block frequency’ and together with ’block size’, these

two values are what determines the speed and size of the total blockchain.

The mining process is based on achieving a consensus between the majority of the

users on the network to decide who will be the miner of the next block. This means

that when a user finds the correct nonce, he broadcasts it to the other peers on the

network who can easily verify that it is the correct value to produce the expected hash

value. That user then becomes the leader and gets rewarded with some currency in

the form of block reward to motivate them to continue mining. Figure 2.2 shows a

sample data of a Bitcoin block.

Limitations of PoW:

This consensus algorithm, however, has some drawbacks. The biggest and most

known problem with PoW is the excess power usage. Miners invest in large machines

that are capable of solving the hashing problem relatively fast. These machines,

however, use lots of electrical power and leaves an environmentally dangerous car-

bon footprint [33]. What’s more, the requirement for powerful machines with high

computational powers makes it so that individuals with limited resources might be

overshadowed by users with enough resources. This problem leads many individuals

to either come up with a solution to this problem or develop alternative decentralized
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Figure 2.2: Example of a Bitcoin block from blockchain explorer

solutions.

Another problem with the current state of Proof-of-Work is the low transaction

speed. Even though this mechanism is considered to be scalable, it has proven to be

clustered as more and more users join the network, creating a bottle-neck for trans-

actions. During 2010, worried about possible spam attacks on the Bitcoin network,

Satoshi Nakamoto modified the source code of Bitcoin to set a maximum size for

each block appended to the blockchain. The value was set to be 1MB. Ever since,

the increase in users on the network led to them experiencing delays in minutes and

sometimes hours as the transaction rate is over four hundred times larger than the

block size limit of 1MB. This problem led to an ever growing debate in the Bitcoin

community as to whether to increase the block size limit to allow more transactions

per second, or to leave it as is [34]. At the time of writing, the value remained to be

1MB.
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2.3.2 Proof-of-Stake

The high energy consumption of Proof-of-Work led to the invention of other consensus

algorithms such as Proof-of-Stake (PoS), which aims to lower the overhead costs of

network operation. Proof-of-Stake was proposed in 2011 as a replacement to the

energy wasting PoW. A year after introduction, it was implemented by King and

Nadal [24] in their PPCoin design. PoS utilizes a different approach to mining new

blocks where instead of harvesting a high amount of computational power, nodes can

stake their coins to lower the difficulty for ’mining’ the next block. The stake value of

different nodes can be calculated by both the number of coins it adds and how long

it holds these coins. When a node stakes the minimum value defined by the system,

it becomes a ’Validators’ and has the chance of being the miner of the next block.

In the PPCoin design, the longer a node holds its coins, the better chance it has of

mining the next block using the formula proofhash < coin age target. When a miner

is chosen for building the next block, its stake will be cleared and a new round will

begin. Validators will lose part of their stake if they approve fraudulent transactions.

As long as the stake is higher than what the validator gets from the transaction fees,

they will have no reason to act maliciously.

The clear advantage of PoS over other consensus algorithms such as PoW is the

reduced required computational power. Given the increased concern in environmen-

tal issues, Proof of Stake provides a potentially better outcome for the environment.

PoS can therefore reach locations where there is a limitation on the possible acquired

computational power, making it more robust and globally available. Another advan-

tage of the PoS algorithm is that miners do not need to calculate a complicated hash

function in a tedious process and only need to pass the proof of stake to obtain the

mining rights. This in turn reduces the block time and transaction processing time

and greatly saves the time for consensus reaching, and the consensus efficiency is

significantly improved [35].
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There are, however, criticisms of the mechanism, that it is not as decentralized as

other consensus algorithms are. PoS requires miners to hold a large number of tokens,

something many nodes might not be able to purchase. It can therefore lead to a

centralized group of nodes with enough resources to hold a large and ever increasing

percentage of the total tokens on the network, thereby reducing the activeness of

the entire blockchain. Another criticism is that PoS is more vulnerable to different

kinds of attacks such as low-cost bribe attacks. Susceptibility to attacks decreases

the overall security of the blockchain [36].

2.3.3 Delegated Proof-of-Stake

Delegated PoS, or DPoS, is a modified version of PoS first introduced in 2014 by

Daniel Larimer [37]. In DPoS, nodes on the network vote and elect other nodes called

’delegators’ that will secure the network on their behalf. DPoS was developed as an

alternative to energy-inefficient consensus of Proof-of-Work blockchains and Proof-of-

Stake consensus, that is poorly protected from malicious intentions of stakeholders.

In Delegated Proof of Stake, the stakeholders in the system elect ”witnesses” by

placing their tokens on the name of their candidate. The coins used that way, much

like in regular staking, are not spent but are a representation of the trust stakeholders

have with the witness. The more stake a node owns, the more powerful voting he

has to assign the witness. The majority of DPoS-based cryptocurrencies don’t permit

witnesses to prevent transactions, and if a witness misses a block (for instance, because

its server went down), it is quickly forwarded to the next active witness.

To manage the system and make fundamental changes, delegates are elected. Del-

egates manage network settings including transaction fees, block sizes, witness pay,

and block intervals but are not in charge of producing blocks or validating trans-

actions. Delegates do not get a salary, but they receive rewards on good behavior

and block mining. Their primary incentive to refrain from malevolent activity is fear
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of losing money and reputation in the DPoS network. The majority of DPoS-based

blockchains consider the magnitude of each stakeholder’s stake. The number of tokens

a voter has in his possession determines how many votes he can cast. However, there

is no rule that forbids nodes from voting because their stake is insufficient. The most

democratic method of developing a blockchain consensus algorithm is DPoS, which

is distinguished by the fact that every network user has the ability to vote.

The benefits of both PoS and PoW algorithms are combined in the DPoS algo-

rithm. The communication between nodes in the DPoS consensus is faster as a result

of the multi-decision maker mechanism with mining rights. The nodes can finish block

packaging, broadcasting, and verification quickly, which greatly increases the system

transaction speed. Because DPoS doesn’t rely on computational resources, it uses less

energy. The system’s transaction delay and transaction processing speed have both

dramatically decreased as a result of the election of decision-makers. At the same

time, it allows a large number of nodes to freely enter and quit the blockchain sys-

tem, making it efficient for a dynamic environment, and the scalability is robust. The

DPoS algorithm’s drawback is that it depends overly heavily on voting regulations.

Poor voting procedures would not only decrease the enthusiasm of participating nodes

but also reduce the system’s decentralization.

2.3.4 Proof-of-Burn

Proof of Burn (POB) is a consensus algorithm that is also trying to address the main

energy consumption problem most traditional algorithms have. The main idea is

allowing miners to ’burn’ their tokens, and by doing so they are granted the right to

mine blocks in proportion to the coins burnt. The way miners can ’burn’ their coins

is by sending them to an irretrievable secured address. The protocol can count how

many coins each user burnt, thus giving users with higher count a higher likelihood

in mining the next block.
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2.3.5 Proof-of-Space

Proof of Space was originally made as an alternative to the Proof of Work consensus

algorithm in public blockchains. Proof of Space(PoSp) was actually proposed as

a consensus algorithm even before the creation of Bitcoin. This algorithm works

in that there is a prover and a verifier in order to achieve consensus. The verifier

essentially authenticates whether or not the prover has the required resources that

it claims it has. The resource in Proof of Space algorithms is disk space. In order

to store data onto a blockchain in a PoSp algorithm, the verifier needs to know if

the prover has enough disk space to store the actual data that the verifier requested.

If the prover has enough space, then the data would be stored and appended onto

a blockchain. The positives of Proof of Space was that it would be able to reduce

energy costs for blockchain networks because only the space that is needed to store

data is used, instead of utilizing resources and energy in order to achieve consensus

like Proof of Work. However, the issue lies within the fact that for people to be a part

of a system that uses PoSp, they would have to sacrifice their personal resources of

disk space, which is expensive. Furthermore PoSp would be difficult to employ onto

public blockchain networks because every time that a prover is asked by a verifier if

they have sufficient resources, they would need to respond, making it a lengthy and

confusing process when incorporating larger blockchain systems. Proof of Space may

work better on smaller scale blockchain networks.

2.3.6 Proof-of-Identity

Proof of Activity is based upon components of both the Proof of Work and Proof of

Stake consensus algorithms. In Proof of Work, authority and decision-making abilities

are given to users that are able to solve problems using computational power. Proof

of Stake is given to the main stakeholders of a system. Proof of Activity begins when

every user in the network uses
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their hash power to create an empty block header to eventually be appended onto

a blockchain. When any miner creates this block, they then send the header to every-

one else in the network. This block header determines random stakeholders for the

individual block by using a sub protocol called ‘follow-the-Satoshi”, essentially where

the nodes with the most Satoshi are given higher chances of becoming a stakeholder.

Then, the nodes who are currently online in the system validate the block header and

check to see if they are one of the stakeholders that were randomly chosen for that

individual block. If they are, they then can append the blockchain by adding their

transactions onto the block. Every node that discovers themselves to be a stakeholder

does the same in the order that they discover they are a stakeholder. In this system,

if a selected stakeholder was to be offline then they would not be able to extend the

block, and instead the other selected stakeholders would be able to instead. Using

the follow-the-Satoshi method in PoA, a user that was trying to control the entire

system would have a large number of the total coins that were generated in the sys-

tem, which makes it safe from large scale attacks. Compared to Proof of Work, if

a user had majority of the computational power in a network, they would be able

to act maliciously. In Proof Of Activity, the more active users are bound to become

more successful since there is a random chance of becoming a stakeholder if you are

online. This would be beneficial in systems where high activity is important, since

activity implies the enthusiasm and effort that nodes are putting towards the system.

The more active nodes would be more deserving of rewards and contributing more to

the system. The cons to this system are if a user that has a large amount of satoshi

were able to influence the follow-the- satoshi protocol too strongly and was selected

as a stakeholder too often.
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2.3.7 Proof-of-Importance

The Proof of Importance algorithm aims to fix a fundamental issue in Proof of Stake.

In Proof of Stake, If a node has a high stake, they have high odds of being selected to

add onto a block and receive rewards. This leads to nodes with high stake winning

repeatedly, making the other nodes in the system powerless and less likely to receive

rewards. The proof of Importance consensus algorithm was introduced by selecting

nodes on a few factors. The two main factors were transaction volume and activity

in a system. Using these factors, nodes that were doing the most work and were also

demonstrating they were active would be given accounting rights in these systems.

In Proof of Importance, the factors would also reset periodically, solving the issue of

the same nodes winning repeatedly in consensus algorithms such as proof of stake.

However the issue with Proof of Importance is that the algorithm relies very heavily

on the free will of the accounting nodes. In the actual selection of the nodes, there is

no aspect of randomization, which could cause problems in security. To solve this, a

variation of Proof of Importance was made. In this algorithm a dynamic delegation of

proof of importance(DPoI) is introduced. This algorithm uses a multitude of factors,

other than simply the stake of a node, to select the block leader. These factors

aValue, iTrade, Ltime, and credit are used to create the node’s iValue, which ranks

the node’s importance against other nodes. Then a Fibonacci series is used to select

nodes at random that have a similar iValue. This algorithm adds more factors to

the mix when selecting nodes, but also randomizes the selection, further improving

Proof-Of-Importance.

2.3.8 Proof-of-Luck

Proof of Luck is a consensus algorithm that uses trusted execution environments and

random number generation to select a leader for consensus in a truly random fashion.

Proof of Luck has two functions. The first is PoLRound where the participants of the
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consensus plan to start mining on a specific chain by starting from a specific block.

Then from that starting block, each participant calls the second function, PoLMine,

which allows them to mine their own block. When each node calls the PoLMine

function, a random value between zero and one, is generated and assigned to that

node. At the end of the consensus round, a select number of the blocks are chosen

as winning blocks, and the node that mined the block would receive the reward. In

Proof of Luck, the consensus leader is chosen at random, but the way the reward

is distributed is also random since the winning blocks are only known at the end of

the round. The issue with Proof of Luck is that it was only designed to be used in

trusted execution environments, meaning if someone were to have malicious intention

inside this environment, they could cause major issues. Proof of Luck can be used in

environments where all the nodes have been established to be trustworthy and safe.

2.3.9 Proof-of-Elapsed-Time

PoET is a consensus mechanism algorithm that is often used on the permissioned

blockchain networks to decide the mining rights or the block winners on the network.

Permissioned blockchain networks are those which require any prospective participant

to identify themselves before they are allowed to join. Based on the principle of a

fair lottery system where every single node is equally likely to be a winner, the PoET

mechanism is based on spreading the chances of a winning fairly across the largest

possible number of network participants.

The PoET network consensus mechanism needs to ensure two important factors.

First, that the participating nodes genuinely select a time that is indeed random and

not a shorter duration chosen purposely by the participants in order to win, and two,

the winner has indeed completed the waiting time.
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2.4 VOTING-BASED CONSENSUS ALGORITHMS

2.4.1 Paxos

Paxos is a consensus algorithm that is based on achieving an agreement among the

majority of users over a synchronized network. Clients can propose a value to the

Paxos protocol and a consensus is achieved when the majority of users on the net-

work agrees on the proposed value. Paxos selects a value from all values that were

proposed to it and then shares this value to all other users. The underlying pro-

tocol is extremely complex and involves assigning different roles to all users on the

network. The consensus protocol is abortable, meaning, some processes may abort

the running of the consensus if there is a disagreement on the value and a consensus

is not achieved. When a client proposes a value to Paxos, it is possible that the

proposed value might fail if there was another proposal that already won. The client

will then have to propose the value again to another run of the Paxos algorithm.

Paxos is widely used and is considered to be the first consensus algorithm that has

been proved to be correct. There are many consensus algorithms that are based on

it; Raft, ZAB, Fast-Paxos and many others.

2.4.2 Raft

Raft is a consensus algorithm that is based on Paxos consensus but is easier to

understand. It offers the same security features as Paxos however it is limited with

its ability of handling malicious users. The algorithm was designed in the context

of replicated state machines in which the algorithm keeps the logs consistent and

identical even when a subset of servers are down. This algorithm performs well

while handling servers communications with a client and synchronizing their data.

Raft is a consensus algorithm that uses log replication. In an effort to make a more

understandable consensus algorithm, it separates the key elements of consensus into
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leader election, log replication, and safety. In practice, even a single adversary taking

control of a single server would be able to make the protocol unsafe.

2.4.3 Byzantine Generals Problem

The Byzantine General’s Problem was first introduced by Lamport, Shostak and

Pease in 1982 [2]. This problem refers to an army of generals in which each general

commands one part of the army and are situated at distributed locations. The gener-

als can communicate with one another only by messenger, and together the generals

must make a common decision whether to attack, retreat or take any other actions.

However, some of the generals may be traitors, trying to prevent the loyal generals

from reaching agreement. A general can pretend to be the correct one, but present

different answers to different generals to manipulate the outcomes. The goal for this

problem is to achieve a secured consensus, in which the generals attack as planned

by the right generals, and not the traitors. In order to achieve consensus, the com-

mander and every lieutenant must agree on the same decision (for simplicity, attack

or retreat).

Definition 2 Byzantine Generals Problem: A commanding general must send an

order to his n− 1 lieutenant generals such that

� All loyal lieutenants obey the same order

� If the commanding general is loyal, then every loyal lieutenant obeys the order

he sends

The algorithm to reach consensus in this case is based on the value of the majority

of the decisions a lieutenant observes. Lamport, Shostak and Pease describe such an

algorithm that can reach a consensus as long as 2/3 of the actors are honest. If the

traitors are more than 1/3, consensus is not reached, the armies do not coordinate

their attack and the enemy wins. Next is the formal definition of the algorithm;
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Definition 3 Algorithm OM(0)

� The commander sends his value to every lieutenant

� Each lieutenant uses the value he receives from the commander, or uses the

value RETREAT if he receives no value

Algorithm OM(m),m > 0

1. The commander sends his value to every lieutenant

2. For each i, let vi be the value lieutenant i receives from the commander, or

else he will retreat if he receives no value. Lieutenant i acts as the commander

in Algorithm OM(m − 1) and sends the value vi to each of the n − 2 other

lieutenants

3. For each i, and each i ̸= j, let vi be the value lieutenant i received from lieutenant

j in step (2) (Algorithm OM(m− 1)), or else he retreat if he received no such

value. Lieutenant i uses the value majority (v1, ..., vn−1)

This can be more clear with a visual example. Let C be Commander and Li be

lieutenant i.

Figure 2.3: L3 is a traitor - L2 point of view [2]
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Fig. 2.3 shows lieutenant 2’s point of view. Following the algorithm, the steps

should be:

1. Commander sends a value v to all lieutenants

2. L1 sends v to L2, L3 sends x to L2

3. L2 reads the majority of values (v, v, x) == v

The final decision is the majority vote from L1, L2, L3 and as a result consensus has

been achieved. One very clear distinction we have between this model and Blockchain,

is the fact that in blockchain we are dealing with a decentralized system. For that,

we can then assume that the commander can act maliciously by sending the wrong

value. Fig.2.4 shows the case where the commander is the traitor. Following the

Figure 2.4: Commander is a traitor [2]

algorithm, again, the steps should be:

1. Commander sends x, y, z to L1, L2, L3 respectively

2. L1 sends x to L2, L3 ; L2 sends y to L1, L3 ; L3 sends z to L1, L2
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3. L1 ← (x, y, z) ; L2 ← (x, y, z) ; L3 ← (x, y, z)

They all have the same value and thus consensus is reached. Even if x, y, z are all

different, the value of the majority of (x, y, z) is the same for all 3 lieutenants. In

the case they are all different commands, we can assume that they act on the default

option, retreat.

This algorithm, however, is only one possible solution to the problem, and it is one

example of the Byzantine Fault Tolerance. Byzantine Fault Tolerance (BFT) is the

characteristic which defines a system that tolerates the class of failures that belong

to the Byzantine General’s Problem [38]. Byzantine Faults are the most severe and

difficult to deal with. Byzantine Fault Tolerance has been needed in airplane engine

systems, nuclear power plants and pretty much any system whose actions depend on

the results of a large amount of sensors. Other variations exist which make solving the

problem easier, including the use of digital signatures or by imposing communication

restrictions between the peers in the network. Blockchains are decentralized ledges

which, by definition, are not controlled by a central authority. Due to the value stored

in these ledgers, bad actors have huge economic incentives to try and cause faults.

That said, Byzantine Fault Tolerance, and thus a solution to the Byzantine Generals’

Problem for Blockchains is much needed.
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2.5 ATTACKS AND COUNTERMEASURES IN BLOCKCHAIN-BASED

PLATFORMS

Cryptocurrencies such as Bitcoin, Etherum and many others have been implemented

using the Blockchain protocol, based on Nakamoto [22]. Like other classical state

machine protocols, Blockchain allows participants to agree on a state, in this case,

the client balance of a certain cryptocurrency. In this agreed state, the data can

reach all other nodes on the network, with no risk of having the data tampered in

any way. This technology can be used for more than just crypto-transactions. It

can also be used to insure intellectual property, creating and using smart contracts,

supply chain track and more. In fact, almost every day there are more and more

other industries that manage to implement Blockchain. A new block can be added

to the Blockchain in a process called mining. Mining refers to finding a 64 digit

hex hash value, namely ”nonce”, that must be less than or equal to the target hash.

Finding this cryptographic hash value can be done in several ways, depending on the

Blockchain network. Most common one is the Bitcoin Blockchain that uses Proof-

of-Work (PoW) where a miner must solve a challenging mathematical problem in

order to acquire the hash value for the next block. This process requires intensive

computational work. Once the correct value is found by a miner, it can be easily

verified by other miners in the network. A miner who successfully carried out the

PoW obtains bitcoins as a reward for his work.

Due to the extremely competitive nature of mining, a miner whose computational

power is only a small fraction of the whole network’s computational power, has a very

low chance to mine a block. Therefore, miners often join mining pools to increase

their revenue. Once a mining pool generates a new block, the obtained revenue is

distributed among all pool members with the respect to their computational power.

The availability of numerous mining pools, brings the opportunity to a miner to

switch between pools if he realizes that the new pool can potentially increase his
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profit. Lewenberg et al. [39] studied the reward sharing mechanism in mining pools

by developing game theoretic models. They concluded that specifically when the rate

of transactions is high, it can be very difficult or impossible to keep the distribution

of the accumulated revenue stable. Therefore, there is always an incentive for some

miners to switch between pools. Mining a new block can also be done using the

Proof-of-Stake (PoS) method [24]. This is an alternative to the PoW, which requires

a huge amount of energy. In this method, instead of using excessive energy to answer

the PoW problem, a PoS mine power is based on the percentage of transactions that

is reflective of his or her ownership stake.

With how great and useful this technology is, there are many ways to attack its

infrastructure and users. These attacks are hard to counter and to find the origin

of these attacks, due to the nature of the Blockchain protocol. There are, however,

some implementations that can be made to a Blockchain network to make it possible

to get some information on the adversary [40].

Fork

The Blockchain fork can be seen as a collectively agreed upon update of the Blockchain.

In this case, the Blockchain splits into two distinct branches. It usually happens as a

result of a change in the consensus mechanism, but sometimes it can be unintention-

ally initialized by mistake as a part of protocol malfunction or issues in the software

updates. Looking at Bitcoin, there have been many forks that can be seen as updates

to the Blockchain. A very famous one is the Bitcoin Cash fork. Bitcoin original

block size is 1MB, which was fine during the first few years, but as Bitcoin gained

popularity more and more transactions were initiated and the size started to become

an issue. This is when the Bitcoin Cash developed by a group of Bitcoin developers

which was a new Bitcoin client with a new block size of 8MB. However, this new
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Blockchain was not accepted by the majority of users on the Bitcoin Blockchain, and

this was why they created this as a fork on the Bitcoin Blockchain.

Figure 2.5: A Blockchain fork [3]

Intentional forks can be either soft or hard. A hard fork is a permanent divergence

from the previous version of the Blockchain, blocks of the old version will not be

accepted by the newest version. A hard fork is a big change to the protocol that

makes previously valid blocks or transactions invalid. Any transaction on the newer

fork will not be valid on the older chain. All nodes and miners will have to upgrade

to the latest version of the protocol software if they wish to be on the new forked

chain.

A soft fork can happen in similar situation, however it is common when there

is a change in the software protocol, in such a way that it is required to keep the

previous transactions, or block, valid to the new rule. It means that the new forked

chain will have new rules but it will still work with the old rules (An example will be

a change of the consensus mechanism). This type of fork doesn’t require everybody

in the network to upgrade in order for the new rule to apply, it is possible to have

only the majority of nodes in the network. Hard fork, on the other hand, requires

(almost) all to upgrade and agree on the new version.

When it comes to resolving forks on a Blockchain network, soft forks are relatively

easy to fix. Verifying the fork can be done by achieving consensus with all of the peers

on the network. This way, the state of the Blockchain can be resumed to its correct

state. Hard forks, however, are slightly more difficult to resolve because of the need

to trace back all the way back to the initial fork. A famous example of resolving
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hard fork was made in Spring of 2016 where a Distributed Autonomous Organization

(DAO) [41] was created on Ethereum [42]. The basic idea of it was to encourage

people to invest and pay Ethers (The currency of Ethereum) to DAO so that they

can get the opportunity to vote on and become investors in different projects proposed

by Ethereum-based startups. The DAO experiment failed after a hacker managed to

steal over $50M USD worth of Ethers. After that, the community of Ethereum voted

to return (fork) to the state before the hack.

Stale and Orphaned Blocks

During the mining process, many users attempt to be the leaders of the next block.

In a case where more than one miner successfully finds a valid next block at the same

time, both proposed blocks are valid, but only one can be appended to the Blockchain.

At this point, the block that will be verified faster will be the block to be appended.

The other block is called stale block and will be left on the Blockchain until deleted.

There are mining attacks that lead to creation of stale blocks on the network, which

makes it so the miner of the block will not be rewarded. Another similar form is

the orphaned block. As the name suggests, an orphan is a child with no parent. In

Bitcoin an orphaned block is a block that is not part of the big chain. Similar to stale

blocks, it usually happens when two or more miners solve a block at a similar time.

However, orphan blocks are legitimate, verified, and were originally accepted by the

network at one point of time. Since they are no longer active and there is no known

parent (ancestor) they are rejected from the actual Blockchain. Figure 2.6 shows the

Figure 2.6: Example of orphan block and stale block [4]

difference between a stale block and an orphaned block.

33



Stale and orphaned blocks are common on most Blockchain networks. In some

Blockchain networks, such as Ethereum, this type of blocks can become a part of the

Blockchain network. These are called uncle blocks. [43].

Pool Formation

Mining blocks in most Blockchains requires a lot of resources, whether it is compu-

tational power, or the currency itself. A single miner usually doesn’t hold that many

resources alone, leading to the conclusion that it will take years for a single miner to

mine a single block[44]. Mining pools is when a group of miners organize themselves

to mine a block as a group, or mining pool. Everybody in this group is working

together, lending their own resources so that when and if a new block is mined, the

group can then share the revenue among themselves. While these pools have been

proven to be more useful for a single miner to increase revenue, it leads to some sort

of centralization, having these groups more powerful than a single miner joining the

network.

2.5.1 Mining Attacks

Cryptocurrencies have been gaining more and more popularity while block mining is

becoming more profitable. This results in more miners joining the network to par-

ticipate in mining competitions. This situation makes cryptocurrencies a reasonable

target for adversaries who want to maximize their revenue by exploiting the network

and other miners. Through game theoretic analysis [45, 46, 39, 47], it is known that

there is an incentive for miners to attack the network in many different ways. In this

section we present various kinds of attacks that have been discovered and studied,

and their countermeasures.
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Countermeasures

Trap trick a dishonest miner into withholding a supposedly full proof-of-work[48]

Special reward for discouraging malicious attacks by providing an additional reward for

finding a new block [49]

Distinguishing a PoW from a partially solved PoW [50]

Rational Manager in Bitcoin Mining Pool Dynamic Strategies to incentivize miners

not to withhold blocks [3]

ZeroBlock - algorithm incorporates the expected time measurement to validate newly

generated blocks[51]

Table 2.1: Block Withholding Countermeasures

Block Withholding Attack

The Block withholding attack was initially proposed by Rosenfeld in 2011 [48] and

is relevant to the PoW. The basic idea is that a single miner can decreases the pool

revenue by never publishing blocks he mines. Once a new block is mined, participants

are then rewarded based on how much effort they had to put towards the solution.

The attacker will not be able to obtain anything directly by withholding a block since

he cannot submit the proof-of-work independent from the mining pool he is registered

with. This is due to a protocol for mining pools that requires only pool administrators

to submit a newly generated block [47]. Therefore, this kind of attack will hurt the

attacker the same way it will hurt the honest miners. The block withholding attack

is performed by the malicious miner for the purpose of sabotage [48]. This is usually

conducted by one mining pool against a different one. Eyal [52] used game theory
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analysis to show that “no attack” is not a Nash equilibrium. This means that two

mining pools attack one another for the purpose of increasing their own revenue.

Ironically, the consequence of this strategy is the opposite, both pools gain less if they

attack each other. This game theory phenomena is known as prisoner’s dilemma. In

regards to bitcoin mining, a malicious miner who unofficially and secretly works for a

selfish pool namely B, can join pool A for the purpose of sabotaging pool A’s revenue.

If the malicious miner finds full proof-of-work, he does not reveal it to pool A, nor

can he submit it to the bitcoin network to claim the reward for himself. Instead he

submits the full proof-of-work to pool B’s administrator to prove the sabotage he

caused to pool A and receives award from pool B. Bag et al. [50] shows that there is

an incentive for a malicious miner to attack the larger pool and receives award from

the smaller pool. Block withholding can also be a prelude to selfish mining attack,

which will be discussed in the next part.

Detection and Countermeasure: Block Withholding within a mining pool

can be detected by relying on the theory of probability. For every pool, the ratio

between the computational power of the mining pool and the whole network’s com-

putational power represents the probability of finding the full proof-of-work by that

mining pool. If the real world number is significantly below the theoretical number,

there is a high possibility that the pool is the victim of Block Withholding attack.

Even though it is not difficult to detect such an attack, finding the source of the attack

could be challenging [53]. Rosenfeld [48] suggests a trickery that can be employed

by the pool manager to dupe a dishonest miner into withholding a supposedly full

proof-of-work. Pools can catch dishonest miners by incorporating this method at the

expense of dedicating a portion of their computational power on a task that does not

produce any potential revenue. As discussed earlier, withholding a full proof-of-work

alone does not benefit the perpetrator and often this kind of attack is just the tip

of the iceberg. Block Withholding might be the sign of a deeper and more compli-

36



cated adversary activity. Since the Block Withholding attack can be conducted for

different purposes, researchers have suggested various countermeasures based on both

the attacker’s incentive and the complexity of the operation. Bag and Sakurai [49]

consider a model in which a miner from a mining pool launches a Block withholding

attack on a target mining pool. Then the authors investigate the parameters that

could increase the profit of the attacker and finally they propose a rewarding scheme

called ”special reward”. The goal of this new scheme is to discourage the attackers by

rewarding them additionally if they find a new block. In addition a block withholder

who never submits a full proof-of-work will be denied from this reward and as a result,

the attack is not profitable anymore.

Bag et al. [50] presents an attack model in which an independent miner is hired

by a malicious pool manager to join a target rival mining pool. The hired miner

supposedly works for the target mining pool. But if he finds a full-proof-of-work, he

withholds it from the target mining pool and instead he informs his employer about

the proof-of-work and receives rewards in return. Then the authors provide a strategy

to discourage such an attack. This strategy which, can be implemented using hash

functions will prevents the miners to distinguish a full proof-of-work from a partial

proof-of-work while making the pool administrator to request a verification from the

miners that shows if they had found a full proof-of-work. Lee and Kim [54] present

a method to prevent Block withholding attacks by detecting the infiltration first.

The authors argue that the attack is the result of infiltration. Therefore, in order

to combat the attack effectively, the focus must be on infiltration detection. A pool

that is suspicious of being attacked by another pool, can infiltrate into the attacker

pool and investigate the attack. If the attack is confirmed, it eliminates the damage

by reducing the revenue shared by the attacker pool.

Solat and Potop-Butucaru [51] proposed a new algorithm to prevent intentional

Block Withholding attack. This new algorithm namely, ZeroBlock, incorporates the
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expected time measurement to validate newly generated blocks. For every trans-

action, an expected time is considered and calculated locally by the nodes. The

expected time depends on the size of the network as well as the difficulty level for

solving proof-of-work and therefore predictable. If the adversarial node does not

submit its block before the calculated expected time, the block becomes invalid and

will be disregarded by honest nodes. The authors state that, by implementing this

solution, it is not possible to create a fork of a blockchain intentionally.

A relatively new approach for countermeasure arrives from the study of rational

pool managers. Feifan et al. [3] present a model where miners are modeled into

short-time-reward-oriented and long-time-reward-oriented. It claims to be a more

realistic, reasonable and comprehensive assumption about the decision of miners when

compared to other research. A manager of a mine pool can incentivize miners in the

pool with not too large hash power and gain extra rewards at the same time with

enough hash power and network connection advantages. The hash power and network

connection advantages it requires for the attack to be profitable are lower than that of

a selfish mining attack, and the reward expectation is higher. The manager may apply

this strategy of whether to withhold and discard other miners blocks in more advanced

and comprehensive attacks such as stubborn mining to get more extra rewards.

Selfish Mining Attack

In the honest mining strategy, as explained before, if a miner finds the full proof-of-

work for the current block in the Blockchain, he then publishes the newly generated

block publicly while earning the reward for solving the problem. Consequently, all

other miners would stop solving the already solved hash and move on to the next

block.

Selfish Mining is the act in which a dishonest miner finds the full proof-of-work

for the block, but he withholds the solution from the public. Similar to the block
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Countermeasures

Adjusting to consensus for making sure that the maximum mining power is smaller

than 25% of the total mining power[55]

Freshness Preferred - An extension with unforgettable timestamp to make it hard to

form a group of selfish mining[56]

Revising the fork to promotes the blocks that are linked to the competing blocks of their

predecessor [57]

ByzCoin - Designed to increase the security and consistency of the Blockchain based

systems[58]

Table 2.2: Selfish Mining Countermeasures

withholding attack only here the dishonest miner continues the mining process gener-

ating as many more blocks he can, before someone on the network is close to solving

the hash. Figure 2.7 shows an example of the selfish mining attack, with the selfish

miner, namely Ms, mining the linked blocks before anyone else can by not releasing

the full proof-of-work to the public.

Figure 2.7: Illustrate of Selfish Mining. Mh is the honest miner, while Ms is the

selfish miner

The effort put by Mh will be completely wasted due to the selfish miner Ms, and
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this is the key of this strategy. Selfish miners want to force honest miners to do wasted

computations, specifically on the stale public branch. These selfish miners basically

wish to have honest miners spend their time and resources on mining blocks that are

already known to not be a part of Blockchain. After the selfish miner releases the

solved block, he already has the full proof-of-work for the other blocks he managed

to mine, and so he gets a reward for solving these blocks as well. It is clear that there

exists an incentive for using the selfish mining strategy [59, 60].

The idea of a selfish mining strategy can cause substantial risk to the health

and the reliability of the bitcoin network. In the original bitcoin paper, Satoshi

[22] claimed that the bitcoin network is secure as long as the computational power

of the honest miners remains the majority. However, according to the more recent

studies, it has been proven that the selfish miners can still undermine the security

and the integrity of the bitcoin network even if they don’t control the majority of the

computational power. In particular, Eyal and Sirer [55] show that in order for a pool

to conduct a profitable selfish mining attack, it only needs more than a quarter of the

total computational power. In a different paper, Sapirshtein et al. [61] analyzed the

minimum resources required to conduct a selfish mining attack namely ‘optimal selfish

mining strategy’. This malicious mining strategy will remain at least as profitable as

honest mining which subverts the security of the bitcoin network.

Intermittent selfish mining [62] is another form of the selfish mining attack that

consists in alternating selfish and honest mining during consecutive difficult periods.

The idea is to fully profit from the decrease of the difficulty but the downside is that

the difficulty does not stabilize and recovers after each phase of honest mining.

It should be noted that the honest miners’ block is not destroyed; rather, it leads

to it becoming a stale block as explained in the previous section. This attack can also

lead to a fork in the chain, in a case where there are two miners who compete to mine

their block and add it to the network. When this type of fork happens, it can cause
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some sort of a delay in the network, which might lead to future possible attacks.

Cyril et al.[63] define ’profit lag’ as the minimum time it takes to be profitable

for a dishonest miner using a selfish mining attack. It is the difference between the

average revenue of selfish and honest mining, where if a selfish miner starts executing

his attack, he can, at any moment, get profits from these attacks. However, if the

miner wants to repeat the attack cycle, he won’t be able to make the same profit.

Detection and Countermeasure: There are not many ways to detect a selfish

miner. One way to detect is to look for a pool with many stale blocks, for all the

blocks that were solved but never linked to the network because of the selfish miner.

However finding stale blocks is not easy due to the nature of these blocks, being

isolated and not connected to blocks on the chain.

As for countermeasure selfish mining attacks, Eyal and Sirer [55] suggested an

adjustment to Bitcoin consensus to reduce the chance of having a selfish miner in the

pool. The new adjustment includes a randomized mechanism that prevents mining

pools from conducting a profitable selfish mining strategy. This mechanism would

work effectively as long as the maximum mining power of the pools is smaller than

25% of the total mining power. In addition, the prevention of the selfish mining

strategy requires at least 2/3 of the miners to be honest.

An extension to the countermeasure presented in [56] by Heilman, which intro-

duced a new concept called ”Freshness Preferred (FP)”. The new defense increases

the minimum share of mining power from 25% to 32%. The new solution incorporates

the use of unforgettable timestamps and it is also robust to the compromises. The

author also shows that it will be difficult for a selfish miner group to work against

this defense mechanism. This is due to the situation that a member of the selfish

mining group is able to anonymously reveal the fact that the group has compromised

the system. This ability gives the members an incentive to blackmail other dishonest

miners. Therefore, it will be difficult and risky for selfish miners to form a group.

41



Zhang and Preneel [57] state that the solutions suggested by [55] and [56] are only

effective if the selfish chain is shorter than the public chain and as the result, these

defenses are incapable of combating a resourceful selfish miner. Then the author

proposes another solution that is effective even if the selfish miner’s chain is longer

than the public’s chain. This defense solution is based on revising the fork resolving

policy that dismisses blocks that are not submitted on time and instead, promotes

the blocks that are linked to the competing blocks of their predecessors. According

to the authors, this solution outperforms the previous solutions suggested by [55] and

[56] and it is also backward compatible.

The solution introduced in [51] as a defense against block withholding attack,

is also suggested as an effective and practical solution to address the selfish mining

problem. Kokoris-Kogias et al. [58] introduces a new algorithm called ”ByzCoin”

which is claimed to be Byzantine fault tolerant. [2] This algorithm is designed to

increase the security and consistency of the Blockchain based systems such as Bitcoin.

The authors suggest that by equipping Bitcoin with the ByzCoin algorithm, the selfish

mining strategy becomes ineffective. The algorithm resolves forks instantly, making

a private fork a waste of time, revenue, and resources

51% Attack

51% attack is an attack that happens when an adversary has the majority of the

network’s mining power (i.e hashrate). This adversary can be a single miner or a

group of miners in a mining pool. This can cause many issues such as prevention in

transactions or blocks from being verified, conducting a double spending attack [68],

zero-confirmation transactions [69], blacklisting and censoring nodes [70], ETC. An

example for such attack happened in 2014, when then mining pool GHash.io had the

majority of the mining attack for one day on the Bitcoin network [71]. GHash.io later

shrunk in size and was eventually closed in October 2016.
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Countermeasures

Two-phase PoW - Continuous-Time-Markov-Chain to prevent large pools from creating

a hegemony[64]

Machine Learning rules to detect and stop suspected attackers by monitoring the stake-

holders on the Blockchain network[65]

Block Maturity Level (BML) - Requires the miner to mine at least one block to add

it to the Blockchain

Random Mining Group Selection - Split miners to multiple groups, then chose one

group randomly for participating in the next mining competition[66]

Verification process for joining mining pools with strict rules[67]

Table 2.3: 51% Attack Countermeasures

The 51% attack is considered as the worse case attack scenario that could disrupt

the security of the Bitcoin so severely that the honest members will eventually leave

the network. In [72] the authors argue that no party within the network will gain a

long term benefit from bitcoin by conducting such attacks. This is due to the fact

that the value of any currency is the product of the public trust in that currency.

The security threats caused by the majority attack, can ruin the public confidence in

Bitcoin and therefore the collapse of Bitcoin will be inevitable. Therefore, there is no

incentive for Bitcoin miners to attack the network in this way. However, this argument

does not dismiss the possibility that a party who has an incentive outside of the bitcoin

network, can conduct the 51% attack for the purpose of destroying the Bitcoin’s

economy. This kind of attack is known as the Goldfinger attack. Governments or
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other organizations may have an incentive to conduct a Goldfinger attack against the

Bitcoin network.

Adversaries do not always need the majority of the Blockchain networks mining

power to carry out the attack. There were cases of this majority attack that involved

the adversary having only a third of the total mining power on the network, yet it

still leads to undesired results. A Blockchain application that is specifically designed

for IOT (Internet of Things), known as ”The Tangle” [73] can be compromised,

theoretically, with much lower hash power. Bahack et al. [74] showed that this type

of attack is possible to achieve with only 1/4 of the network’s computational power.

Detection and Countermeasure: These attacks have been widely discussed,

and have many countermeasure proposals to reduce the chances of a monopoly in the

Blockchain networks.

Bastiaan [64] introduced the concept of ”two phase proof-of-work” (2P-PoW) to

counter these attacks. This newly developed method is a model in which the miners

are required to solve two challenges instead of a single one on a classic Blockchain

network. 2P-PoW prevents adversaries from executing coordinated attacks.

Dey [65] proposed a methodology in which the activity of stakeholders in the

Blockchain network can be monitored by using an intelligent software agent. This

software agent can detect the majority attack by relying on supervised machine learn-

ing algorithms. If the attack is likely to happen, the system implements the set of

rules to prevent the Blockchain confirmation from the attacker.

Memon et al. [75] introduce a new consensus protocol called Block Maturity Level

(BML) for Blockchain related technologies. The authors stated that by adapting this

new protocol, the attacker would need more than 51% hash power to undermine the

network. This new protocol requires the miner to mine more than just one block

in order to add the first block onto the Blockchain. Once the miner finds the first

block, the status of the block remains ”pending” until the miner adds 4-5 sub-blocks
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to the original block. The approximate time for the sub-blocks will be a quarter of

the time of the original block. Once these extra sub-blocks are added, the status will

change from “pending” to “active”. BML protocol decreases the risk of 51% attack

significantly. The attacker needs to mine all the subsequent sub-blocks which makes

the attack more difficult to succeed.

Bae et al. [66] propose a new technique called Random Mining Group Selection.

The proposed approach splits miners onto multiple groups then selects one group

randomly. Only the peers from the selected mining group are allowed to participate

in the mining competition for the next block. Each peer can find its mining group

through a hash function and its wallet address. Once the new block is generated and

broadcasted over the network, the rest of the miners can examine whether the new

block is added by a miner from the selected mining group or not. This can be done

by comparing the hash value of the previous block to the block creator’s address.

This procedure can defend the network against 51% attack effectively. By increasing

the number of groups, the chance of attack will be decreased significantly since the

groups are selected randomly. This mechanism reduces the block mining hash power

to the hash power of the selected group since the peers outside of the selected group

don’t participate in mining. Also, the difficulty level of mining will be adjusted to

the size of the mining group accordingly.

Bala and Manoharan [67] suggest a method of criteria checking for miners to

participate in the mining process as well as a verification process for joining mining

pools. This proposed method includes a number of rules that are designed to evaluate

the trustworthiness of the Blockchain users. The verification process is aimed to

prevent malicious clients from joining the mining pools. The rules include:

1. Check the history of the miners to determine if they have involved been in an

attack

2. Check the Bitcoin balance in their wallet
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3. Determine if the miners hash power is added to the pool’s hash power which

the miners are joining, the sum does not exceed more than 50% of total hash

power.

Network Attacks

Countermeasures

Blacklisting IP addresses of users with low trust score, which is based on the behavior

on the network[76]

Short term countermeasures: Increase diversity, monitoring round-trip time (RTT),

monitoring user statistics, etc..

Long term countermeasures: : Encrypting Bitcoin communication, using MAC, using

UDP heartbeats, etc.. [77]

Counting the number of stale blocks and comparing it with the baseline [78]

Table 2.4: Network Attack Countermeasures

These attacks are somewhat different than the other mining attacks that were

covered in the previous sections in the sense that these attacks are associated with

the peer-to-peer network, where the goal of the adversary is to block miners and other

nodes from the network, to limit their access to the network or to enforce conflicts

between the nodes. The attacks include among others the DNS attack and Eclipse

attacks which will be covered next. DNS Attacks

Domain Name System is the name of the service used to identify different IP

addresses using their domain name. On the Blockchain network, when a new user

joins for the first time, he needs to discover the other active peers which are identified
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by their IP addresses. This process can be done with DNS where the DNS seeds are

initated by different nodes once they join the network.

The developer’s guide of Bitcoin [79] explains that the DNS is vulnerable to all

kinds of attacks, cache poisoning and more. This makes the DNS a great place for

adversaries to execute their attacks and isolate Blockchain peers. In this attack, just

like a regular DNS attack, the adversary is tampering with the users’ DNS service

by injecting an invalid list of seeder nodes or poisoning the DNS cache. What it all

means is that an attacker can inject a fake list of seeders, he will potentially be able to

isolate users on the Blockchain and lead them to a compromised network. Figure 2.8

Figure 2.8: DNS attack. The attacker injects the DNS cache with modified data so

when the user queries the server to obtain the IP of peers on the network, he is routed

to the malicious network instead of the Bitcoin for example

shows an illustration on how such a DNS attack can be carried out by modifying the

DNS cache. An adversary can inject false information inside the DNS server so that

when a user is queries the DNS for information about the Blockchain network (active

peers, transaction, etc.) the DNS service directs the user to the malicious network,

where the attacker can ’feed’ the user false information and make him vulnerable to

different attacks. Eclipse Attacks

Each peer on the Blockchain network is identified directly by its IP address. Com-

munication with other peers is established by using a randomized algorithm that finds

8 random peers on the network and forms long lived connections. For the purpose

of establishing the connection (handshake) a maximum number of 117 unsolicited

incoming connections are allowed. Through this communication, peers can broadcast
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and receive important data on the network, i.e the latest state of the Blockchain in

the network.

This network communication protocol can successfully provide an open and decen-

tralized network environment. But there is a crucial security trade-off. The malicious

peers can also join the peer-to-peer network with the intention of abusing honest

peers or undermining the security of the network. An attacker can target a victim

node from the network and then isolate its connections to only the IP addresses that

are controlled by the attacker. This is the basic idea of the Eclipse attack [80, 81, 76],

where the attacker can manipulate the victim’s connections on the network.

Eclipse attack often conducted for different purposes including Delivery-tampering

attacks [82] engineering block races, double spending, generating a hidden fork on the

network, making the victims to waste their computational power on old or obsolete

blocks and finally hijacking the victims computational power. The minimum required

resources to conduct an Eclipse attack has been the subject of much research.

Marcus et al. [80] presented an eclipse attack model on Ethereum network that

can be imposed by an adversary who controls only two IP addresses on two computers.

Heilman et al. [76] used a mathematical model to demonstrate an eclipse attack, then

to confirm the practicality of this model, they performed it on their own bitcoin. They

found that an attacker with only 32 distinct IP addresses or a 4600-node botnet, is

able to conduct an eclipse attack against a victim with at least 85% chance of success.

Routing Attacks

This attack was first introduced by Apostolaki et al. [77] in 2017. Routing attack

can be conducted in small-scale targeting individual peers or large-scale targeting the

whole network. The authors describe two kinds of routing attack individually. The

first kind is called Partitioning Attack.

By conducting this attack, the attacker aims is to disconnect nodes or sets of nodes

from the network completely. To do so, the attacker needs to disconnect all the
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connections between the victim nodes and the rest of the network. Due to the com-

plicated structure of the Bitcoin network, the initial isolation may not be complete

and the isolated nodes may still leak and be able to hold some communications with

the rest of the network. The attacker is able to detect and eliminate these leaks

until the victim nodes are completely isolated and the network is partitioned. The

second kind is called Delay Attack. The purpose of this attack is to slow down the

propagation of blocks sent from or received by the victim nodes. In contrast to par-

tition attacks, which requires a perfect isolation, delay attacks can be conducted by

just intercepting a subset of connections between the victim nodes and the rest of

the network. The detection of delay attacks requires more challenges than partition

attacks. Routing attacks can cause a significant loss to mining pools and individual

miners. By partitioning the network or interrupting the propagation of blocks, the

attacker can force the victim miners to waste their mining power on the blocks that

are eventually discarded.

Khalilov et al. [83] further studied various partitioning attacks on Bitcoin. The

authors show that the Bitcoin network is getting more and more centralized at the

AS-level. Through data collection and analysis, the authors show that the consensus

among Bitcoin peers is non-uniform. As a result, the network is becoming more

vulnerable to partitioning attacks. The authors then demonstrate four variations

of partitioning attack: spatial, temporal, spatio-temporal, and logical. Stubborn

Mining Attack In general, the selfish mining strategy is used by the attacker to

acquire short term rewards. From the attacker’s point of view, if his private chain

is longer than the public’s chain, he will continue mining on his private chain for

the hope of generating even more blocks. But if the attacker’s private fork falls

behind the public chain, he disregards his private fork and reverts back to the public

chain. Stubborn mining, first introduced by Nayak et al. [81], is a selfish mining

strategy, when the attacker persists in selfish mining. So in general a stubborn miner
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will not give up on selfish mining easily. The authors argue that the selfish mining

strategy is not optimal. It means that by following the stubborn strategies, the

attacker will be able to gain even more rewards than if he only employs selfish mining

strategies. Then the authors introduce three different stubborn strategies namely,

”Lead stubborn”, ”Equal Fork stubborn” and ”Trail stubborn”. In these strategies,

the attacker strategically reveals his hidden individual blocks based on the current

state of the Blockchain rather than just revealing his entire fork at once. This allows

the attacker to increase his revenue by up to 25%. The authors also studied a model

in which, stubborn mining is combined with eclipse attack, hence the attacker can

gain up to 30% more rewards in comparison with the less advanced use of eclipse

attack. The profitability of stubborn mining strategies, depends on the duration of

the attack and the analysis of the expected revenue [84].

Detection and Countermeasure: Detecting and countering network attacks

is slightly different than other mining attacks, because that the nature of these attacks

in to tamper with the network of a specific user and not with the Blockchain network.

This means that there are many options for attackers to achieve their goals but it

also means that there are many countermeasures. The HTTPS protocol, for example,

can achieve some sort of security in the face of an attacker trying to inject false DNS

information.

Overlay networks in general can be vulnerable to Eclipse attacks. In the recent

studies on Eclipse attacks [85, 86, 87, 88] it has been shown that more constraints

and structure changes are suggested to effectively prevent Eclipse attacks. Blockchain,

however, is an unstructured network, which means that each node is connected to an

arbitrary subset of nodes determined by a randomized algorithm. Many researches

[89, 90] are focused on designing a new unstructured network scheme that is tolerant

of these attacks.

Jesi et al. [91] proposed a new detection mechanism that can identify and blacklist
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the adversary nodes. The authors state that their method is effective when a large

number of malicious nodes are present in the network. This defense mechanism

however does not fully preserve the open and decentralized structure of the Bitcoin

network. Heilman et al. [76] study eclipse attack on Bitcoin network exclusively and

present different countermeasures. These countermeasures are usually caused by the

Botnet and are designed to preserve the Bitcoin’s network architecture. The authors

suggest techniques that can be used to save the IP addresses of the trusted nodes. If

the user is connected to unknown peers, these unknown peers IP addresses are saved

in a different variable namely ”tried”. The communication between the user and other

peers in the network depends on the trust level that can be changed from time to

time. The authors also mention that the attack has some specific features that make

it identifiable such as a sudden TCP connection from a variety of IP addresses that

send messages containing ”trash” addresses. Once detected, these malicious addresses

will be blacklisted from the network.

Apostolaki et al. [77] present both short-term and long-term countermeasures

against Routing attacks.

The short-term measures are compatible with current protocols so the early adopters

can immediately take the advantage of increased protection. These countermeasures

include: selecting specific nodes with consideration of the routing, increasing the

diversity of connections between nodes, monitoring round-trip time, monitoring ad-

ditional statistics, embracing churn, using gateways in different AS’s and preferring

users hosted in the same AS and in other, commonly used prefixes. The long-term

measures on the other hand, require some adjustments to the Bitcoin protocol includ-

ing: encrypting Bitcoin communication and/or adopting MAC, using distinct control

and data channels, using UDP heartbeats and finally requesting a block on multiple

connections. Saad et al. [92] who study four forms of partitioning attacks, presented

many countermeasures to these attacks.
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Nayak states that stubborn mining and eclipse attacks can usually be detected by

monitoring stale block rate. Stale blocks are the blocks that include a valid proof-

of-work and transaction data but they are not included in the main chain. [78] The

appearance of stale blocks is probable on a random basis even in absence of malicious

miners. The difference is, if miner nodes are honest, the rate in which a stale block

appears is the same for all of the miners. If there is a stubborn miner, the rate in which

a stale block appears would change depending on the dishonest miner’s strategy. An

attack can be detected if by counting the number of stale blocks and comparing it

with the baseline

DDoS Attacks

Countermeasures

Hashcash - A defense against DDoS attacks which later becomes the foundation of Bit-

coin’s proof-of-work system[93]

A static game model designed to calculate the Nash equilibrium that brings the best

strategy for the defender[94]

Detection algorithm that relies on the frequency sorted distributions and the entropy

of selected packet attributes[95]

Detection by incorporating multiple methods of unsupervised data mining[96]

Table 2.5: DDoS Attack Countermeasures

DDoS, or Distributed Denial of Service is a very common attack that can be used

against almost any online service [97]. DDoS in general is an adversarial attempt

conducted by an attacker against a target user or a network service for the purpose
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of disrupting it in such a way so that the victim cannot properly operate. The

attacker overwhelms the target’s resources by causing a traffic jam in the network

[98]. According to [43], the mining pools are the second most frequent target of DDoS

attacks. DDoS attacks are very versatile and it shows that they can be executed in

various ways, changes based on the different environment for it to be executed, the

type of network and the nodes in the network. After analyzing different Blockchain

networks, it is clear that the 51% majority attack can lead to DDoS. This is because

this attack means that there is an adversary with more computation power than all

other nodes on the network, so this adversary can prevent miners from adding their

mined block to the network, and they can alter future transactions which can lead to

denial of service.

Competing mining pools, for example, can also conduct DDoS attacks against one

another. There are two objectives for conducting such an attack. First, the operations

or the communications between the members of the target mining pool are disrupted

or delayed. This can directly bring an advantage to the attacker mining pool in

the competition. Second, as the result of the interruptions caused by the attack,

the members of the victim mining pools might face frustrations and this could be a

motivation for them to leave the pool.

Vasek et al. [43] states that over 60% of large mining pools have been the target

of DDoS attacks. The number is reduced to 17% for the small mining pools. This

suggests that the larger mining pools are more likely to be the target of DDoS attack.

In a different research [45], DDoS attacks against the mining pools were studied

using Game-Theoretic analysis. The authors confirmed that there is more incentive to

attack a larger mining pool than to attack a smaller one. Also the larger mining pools

have more incentive to attack than the smaller mining pools since the competitors for

the larger mining pools are relatively fewer and the attacker may seek to eliminate

its competitors in order to increase their fraction of computational power.
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There are different ways to execute this attack due to the limited number of TPB,

or transactions-per-block that the Blockchain network can process in a given time.

This number changes between networks, but overall there is a cap to the number of

transactions per minute. According to [99] it takes on average 10 minutes to mine a

new block on the Bitcoin network, with a maximum of 1 MegaByte, or one million

bytes. A transaction on the Bitcoin network weighs about 500 bytes, meaning there

is an average of about 2000 transactions on a single block [100]. When analyzing

the amount of time it takes to mine a new block on the Bitcoin network, it takes

an average of 10 minutes. 2000 transactions per 10 minutes is 200 transactions per

minute. A single transaction is usually made between two different nodes on the

network, so the total number of active nodes that can be served by the network per

minute cannot exceed 200.

An adversary can take advantage of this and use many different nodes under his

control to schedule a very small transaction (transferring 0.0001 BC for example) at

the exact same time. By doing so, large numbers of users who try to make transactions

at the same time will not be able to do so, causing denial of service, assuming this

adversary has enough nodes to cap the capability of the network to process any new

transactions during this time.

Another form of DDoS attack is executed in the memory pools, or mempool of

the Blockchain network to increase the mining fee. Mempools is the place where the

data that needs to be executed is stored. All of the recent and pending transactions,

including unconfirmed transactions, are stored. This mempool is also a way for the

network to determine the mining fee is calculated, based on the number of transactions

that are in the mempool.

Saad et al. [101], introduces a new type of DDoS attack on the Blockchain network

in which an adversary can create many unconfirmed transactions to significantly

increase the number of transactions in the mempool. These transactions can be
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either very small, or transactions that are not valid. These transactions increase the

total number of transactions in the mempool and so it increases the mining fee for

all the nodes in the network. This can cause users to drop and stop their mine, or

create an increasing number of people who are willing to pay mining fees hoping to

increase their chances.

Detection and Countermeasure: In general all large networks could be the

subject of DDoS attack and before the introduction of the Blockchain based networks,

many researchers had studied possible solutions to combat DDoS attacks. In [93] the

author proposed a mechanism namely, Hashcash as a defense against DDoS attacks

which later became the foundation of Bitcoin’s proof-of-work system. Bedi et al. [94]

proposed a scheme in which the interaction between the attacker and the defender is

demonstrated. Then a static game model is designed to calculate the Nash equilibrium

that brings the best strategy for the defender. The author examines the effectiveness

of this game theoretic defense through number simulations. Feinstein et al. [95]

present a detection algorithm that relies on the calculation of entropy and frequency-

sorted distributions of selected packet attributes. Hyvärinen et al. [96] introduced

a DDoS attack detection system that incorporates multiple methods of unsupervised

data mining.

Johnson et al. [45] suggested a game theory model, to fight the different DDoS

attacks that are executed on mining. This game theory model lowers the incentive of

adversaries for such actions, and proves to be useful on many Blockchain networks.

Pool Hopping Attack

This attack is a very basic one where due to the increased availability of different

mining pools, a single or a group of miners have the opportunity to switch between

mining pools if they realize they can increase their profit by doing so. The way mining

pool works is that each miner can submit his or her share of the work to solve the
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Countermeasures

Detect pool hopping based on rewarding transactions - pool hoppers rewards are

significantly more than that of static miners[102]

Optimized rewarding system - rewards are given to the miners in proportion to the

score they have received in each round[103]

Protocol in which the mining process is completely decentralized[104]

Smart contract-based pool hopping prevention by sharing miners computational

power[105]

Table 2.6: Pool Hopping Countermeasures

hash, so that whenever a new block is mined, the mining pool can share the reward

between the different miners based on their effort in solving it. If, for example, a

miner did more than half of the work, he or she will get most of the reward. However,

this can cause a problem where the value of blocks that are solved in a short time are

worth more than blocks that are solved in average time or more.

Lewenberg et al. [39] studied the reward sharing mechanism in mining pools by

developing game theoretic models. They concluded that when the rate of transac-

tions is high, it can be very difficult or impossible to keep the distribution of the

accumulated revenue stable. Therefore, there is always an incentive for some miners

to switch between pools. This pool switching can potentially sabotage the targeted

mining pools if it is practiced extensively. [48] The malicious miners constantly leave

and rejoin mining pools based on the expected financial rewards the pools offer.

When a mining pool offers low rewards, the attacker leaves and when the rewards

are high, the attacker rejoins. The result of this leaving and rejoining the victim
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mining pool by the attacker, enables him to receive more rewards than his expected

hash power. On the other side, the honest miners who mine for the same mining

pool consistently, receive less rewards than their expected hash power. This situation

prevents the victim mining pool from operating effectively and mine blocks success-

fully before their competitors. [105] As a result, the honest miners will lose money

by staying in the targeted mining pool and eventually have to leave the pool. Rosen-

feld demonstrates in [48] that the current reward system that is practiced by mining

pools, encourages pool hopping attack in the sense that it is more profitable than

continuously mining.

Detection and Countermeasure: Belotti et al. [102] studied pool hopping

detection exclusively. The authors propose a solution to detect pool hopping based

on rewarding transactions ordering.

To determine whether a miner is practicing a hopping strategy, it is crucial to focus

on his rewarding transactions. This detection strategy is based on time epoch which

refers to a time window in which the miner has received rewards from different min-

ing pools. Time epochs can be determined by analyzing the bitcoin transactions in

the miner’s wallet. The authors show that pool hoppers’ rewards are significantly

more than the static miners. Also the behavior of pool hoppers does not necessarily

correlate with the value of the cryptocurrency.

Slush pool is the first mining pool that has implemented an optimized rewarding

system for the purpose of pool hopping prevention. In this mechanism, rewards are

given to the miners in proportion to the score they have received in each round. The

scoring algorithm dynamically computes a score for each share based on its submission

time. Rosenfeld et al. paper discusses a scoring mechanism that is used to compute

rewards for the members of a mining pool. The proposed algorithm is based on the

scoring mechanism similar to Slush’s implemented method but different in a way that

the scores for each share remains the same whereas.
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Salimitari et al. [106] propose a prospect theory which can help a new miner to

find the most profitable pool. The authors state that the best pool for a specific

miner is not necessarily the best pool for all miners. The suggested utility function

can be used to calculate the value function that determines the risk and loss for each

miner according to their hash power and their electricity costs. The main priority

to this method is loss avoiding rather than profit making. The authors evaluate the

accuracy of their theoretical methodology by joining five different pools and mining

for 40 days, then comparing the actual results with the predictions that are provided

by the utility function. The results however show that the predictions are not as

accurate as expected.

Luu et al. [104] propose a new protocol for an efficient decentralized mining pool

namely SmartPool. This new protocol can be implemented in existing cryptocurren-

cies. It is aimed to resolve the problem with centralized mining pools in Bitcoin and

Ethereum by structuring a platform where mining is completely decentralized. The

authors conduct an experiment in Ethereum testnet and conclude that the protocol is

efficient in practice and therefore, ready to be deployed in real blockchain networks.

Singh et al. [105] introduce a new prevention scheme for pool hopping attack

prevention based on smart contracts. The main purpose of this scheme is to secure the

relationship between miners by having them all to share their computational power

faithfully, meaning they have to show some proof on how fast they can compute a

simpler problem. This model provides number of benefits including:

1. The pool manager is able to monitor the action of each miner before they can

join the mining pool

2. It requires the miners to submit coins as escrow. If a miner try to abandon the

mining pool, his escrow coins are seized as punishment

3. To facilitate the calculation of the exact amount of escrow, a detailed numerical
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model is provided

To examine the practicality of the proposed model, the authors implemented a case

study of an Ethereum based blockchain for an IoT smart home. The authors state

that only a few limitations in this model need to be addressed in future research.

More Countermeasures

Reputation-Based Countermeasures

Nojoumian et al. [1] propose a new reputation-based scheme for the proof-of-work

computation. The authors rely on game theoretical analyses to demonstrate the ef-

fectiveness of their proposed model. This solution is meant to encourage the miners

to stay away from dishonest mining strategies by relying on a system of reputation.

Each miner is assigned a public reputation value and this value reflects how trustwor-

thy the miner has been so far in terms of mining activities. The authors demonstrate

that, by using this solution, honest mining becomes Nash Equilibrium. It means that

the miners who are more reputable, have a higher chance of receiving mining invita-

tions from the pool managers than the ones who are not trustworthy. As a result,

the miners are incentivized to maintain their reputation continuously. Even if miners

can increase their short term revenue by mining dishonestly, in the long term, it will

be in their best interest to maintain their reputation value high.

Tang et al. [107] also propose a reputation-based approach to block the miners’

malicious activities. With this approach, the satisfaction of the pool managers to-

wards each miner is recorded and evolved overtime. Before beginning the mining

process, the pool manager sets a threshold level for reputation and the miners whose

reputation value is below the desired value, are not eligible to join the pool. In this

model the reputation value is also used to judge whether the peer is reliable or not.

The authors hope that by implementing this solution, the pool managers only se-

lect trustworthy miners and overtime the development of the cryptocurrency system
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benefits from this reputation-based scheme.

Application Countermeasures

Using any cryptocurrency requires the use of an application. Based on the nature

of applications, they will have their own advantages and disadvantages when it comes

to security.

There are various possible application countermeasures that are used to block po-

tential adversaries. For example, users can create a backup of their cryptocurrency

wallet so that they can have back access to the hash in case someone manages to break

into it, users can also change their password periodically to ensure wallet encryption.

There are plenty of available services online and offline to increase the application

security.

2.5.2 Technical Discussion

Blockchain technology has become more and more popular in recent years. This

popularity also means that more people are trying to find a way to take advantage of

this technology. The mining attacks that were reviewed in this dissertation are some

of the most common recent ones. Most of the attacks and countermeasures that were

presented in this dissertation are relatively new, which shows that as this technology

becomes more and more accessible, so is the number of attacks increases.

DDoS was known to be the most common mining attack in the Blockchain net-

work, however in the last couple of years the 51% attack took its place as the most

used attack against miners on the network. With cases such as the Bitcoin Cash at-

tack during May 2019, where two pools carried a 51% attack on the BTC Blockchain

in order to stop a miner from taking coins, Or the Ethereum Classic January 2019

attack.

Blockchain is a growing technology that is used in many applications such as smart

contracts [108], IoT [109] and most commonly, cryptocurrencies [110].
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Blockchain applications provides a decentralized exchange environment which is built

on cryptography and peer-to-peer technologies. These technologies make it so that

accepted ”transactions” are written on an immutable ledger [111, 112]. This ledger

is public, and its peer-to-peer system means that it is maintained in a decentralized

fashion.

Bitcoin [22], for example, is a cryptocurrency that has gained a substantial pop-

ularity since its introduction in 2009. Unlike the traditional currency system that

requires an intermediary to keep track of the transactions, Bitcoin transactions are

recorded as ledgers and distributed among all the participants on the network, there-

fore, all the transactions are public. This public log is known as Blockchain. All peers

in the Bitcoin network have full access to the history of transactions and due to the

cryptographic relation of each block to its previous block, it would be extremely diffi-

cult for an adversary to modify a block once it is broadcasted to the other participants

in the network.

A new block can be added to the Blockchain in a process called mining. Mining

refers to finding a 64 digit hex hash value, namely ”nonce”, that must be less than

or equal to the target hash. Finding this cryptographic hash value can be done in

several ways, depending on the Blockchain network. Most common one is the Bitcoin

Blockchain that uses Proof-of-Work (PoW) where a miner must solve a challenging

mathematical problem in order to acquire the hash value for the next block. This

process requires intensive computational work. Once the correct value is found by

a miner, it can be easily verified by other miners in the network. A miner who

successfully carried out the PoW obtains bitcoins as a reward for his work.

Due to the extremely competitive nature of mining, a miner whose computational

power is only a small fraction of the whole network’s computational power, has a very

low chance to mine a block. Therefore, miners often join mining pools to increase

their revenue. Once a mining pool generates a new block, the obtained revenue is
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distributed among all pool members with the respect to their computational power.

The availability of numerous mining pools, brings the opportunity to a miner to

switch between pools if he realizes that the new pool can potentially increase his

profit. Lewenberg et al. [39] studied the reward sharing mechanism in mining pools

by developing game theoretic models. They concluded that specifically when the rate

of transactions is high, it can be very difficult or impossible to keep the distribution

of the accumulated revenue stable. Therefore, there is always an incentive for some

miners to switch between pools. Mining a new block can also be done using the

Proof-of-Stake (PoS) method [24]. This is an alternative to the PoW, which requires

a huge amount of energy.

2.5.3 Concluding Remarks

The Blockchain-based cryptocurrencies have gained substantial attention since the

introduction of Bitcoin as an alternative decentralized currency. However, this pop-

ularity has also attracted individuals with malicious intentions. The usability of

Bitcoin and other similar cryptocurrencies depends on the level of their reliability

and security. Mining attacks have been one of the main issues of the Blockchain-

based cryptocurrencies. In this dissertation, we described these attacks individually

and then reviewed the detection methods and countermeasures that have been pro-

posed by many researchers. Most of these solutions target a particular kind of attack.

In contrast, the reputation-based solutions do not address a specific mining attack.

Instead, they are aimed to encourage miners to commit to honest mining strategies.

Many of these solutions are validated by relying only on game theoretic analyses

whereas many other solutions are validated by incorporating practical experiments.

To clarify the effectiveness and the practicality of these solutions, further research

studies with real world experiments are needed.
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CHAPTER 3

ISRAFT - DECENTRALIZED INFORMATION SHARING

3.1 INTRODUCTION

With the development of information sharing technology and its increasing threats,

various secure information sharing techniques have been developed over years. One

challenge is to design a closed network system where information can be shared in a

secured way under the assumption that data is tamper-proof and secured in the pres-

ence of adversaries. Raft consensus algorithm, designed by Ongaro and Ousterhout

[113], seems to be one of the initial promising solutions to this problem. The original

Raft implementation is an improved Paxos style protocol that is much easier to un-

derstand. It offers the same security features as Paxos. The algorithm was designed

in the context of replicated state machines in which the algorithm keeps the logs

consistent and identical even when a subset of servers are down. This algorithm per-

forms well considering its main objective, i.e., handling servers communications with

a client and synchronizing their data. However, to be used for information sharing,

it needs to be improved.

The concept of achieving consensus among parties has been studied for many years.

It became well-known when Satoshi Nakamoto published the famous Bitcoin paper in

2009 [114] and introduced Blockchain as an infrastructure for the Bitcoin technology;

see [1] for details of Bitcoin mining in Blockchain. Achieving consensus among peers

on the network was necessary for implementation of Bitcoin. This platform was

the first state-of-the art that utilized a consensus algorithm to achieve trust among

parties in a decentralized network. Satoshi’s idea was based on the one-cpu-one-
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vote rule, i.e., proof-of-work (PoW) consensus algorithm that has been and still is

the most commonly used consensus algorithm for cryptocurrency. Other consensus

algorithms were developed ever since, such as proof-of-stake (PoS) [24] and proof-

of-authority (PoA) [115], to name a few. Paxos is an example of a fault-tolerant

distributed system that is complex to be implemented. However, Raft was introduced

as a modern consensus algorithm that is based on the same principles of Paxos but

with less complexity.

Drawbacks of Information Sharing Using the Original Raft.

We define information sharing as the possibility of servers to send secure messages to

a central log via a secured and tamper-proof channel in the presence of adversaries.

The original Raft algorithm is the first building block to be used for this purpose.

However, it has many disadvantages. The first and most important is that Raft can

not operate properly when an adversarial node is presented in the cluster. Here, we

illustrate a couple of issues when the original Raft is used.

Leader Election: The first stage of the system is to elect a cluster leader. In a

malicious environment, a server can self-elect by updating to a new term and sending

heartbeat messages to the other servers in the cluster. A malicious leader can also stall

the system by initiating election repeatedly, thus preventing the system’s availability,

i.e., causing a stall election. The servers can also start a new election even if it still

receives heartbeat messages from the current leader.

Log Replication: This happens when a new state is presented to the system and

the servers eventually are required to arrive at the same state. Replicating the log

needs to be secured and immutable as possible, especially when an adversarial server

is present. In the Raft algorithm, the leader server can change or drop requests that

are sent to him, i.e., violating the integrity of the system.

Another drawback is that the Raft algorithm is a client-server communication with
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a single client and a cluster of servers, whereas we need the servers to send requests

to the cluster without relying on a single authority. This leads to a multi-client-server

communication where each node is both a client and a server.

Improved Raft for Information Sharing.

We present an alternative method of information sharing in a closed and isolated

network with N servers. The communication model is similar to that of the original

Raft under the assumption that it is reliable in the presence of an adversary that can

cause network lagging and information loss. Therefore, we incorporate the following

improvements into the Raft information sharing design:

1. Byzantine Fault Tolerance: As stated earlier, it is impractical to use the original

Raft as the main consensus algorithm without modifications. The first thing

that needs to be taken into account is to allow the system to work under the

Byzantine Fault Tolerance (BFT) assumption [116]. This assumption allows the

system to work securely in the presence of Byzantine servers that can sabotage

the Raft algorithm. Copeland and Zhong [117] provide Tangaroa as a solution

to this problem.

2. Client servers: The Raft algorithm is built as a cluster of servers that communi-

cate to a single client. Whenever the client wishes to update the log, he sends a

message to the leader server that handles the log replication for all other servers

in the cluster. Non-leader servers cannot send any request to change the data

on the log. In our design, every server is able to request a data appendance.

This is similar to the state-change in the state machines.

3. Log modification: In the original Raft, every server holds a log, where every

server keeps the machine states. In our implementation, the log needs to be

changed into a data buffer that holds data. The simple state log then turns into
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an immutable data log. A server can only append information to this log to be

shared with other servers in the cluster. For the sake of simplicity, data log is

used when we refer to the buffer.

4. Validation: Data validation can be subjective to the purpose of the network. We

provide a design in which every server can share data in the cluster regardless

of the meaning of data. The validation process can be added as a second layer

to the infrastructure so that servers can be dropped from the cluster when they

don’t follow the required messages properties.

3.2 ISRAFT: OUR NEW INFORMATION SHARING PARADIGM

Our improved version of the Raft consensus algorithm, named ISRaft: Information

Sharing Raft, uses similar fundamentals as the original Raft algorithm, i.e., Leader

Election and Data Log Replication. In addition to modifying these features, our

new design includes message validation and security in the presence of an adversary.

This design of Raft offers the same security properties as the original Raft consensus

algorithm that are as follows:

• Election Safety: Only a single leader is allowed per cluster.

• Leader Append-Only: The elected leader can only append information to the

data log. A server can never delete or overwrite any entry.

• Log Matching: If there are two data logs on two different servers with the same

term and same data, then the entire data logs on the two servers are identical

in all entries up to the last term.

• Leader Completeness: When a leader commits a message to the log, that mes-

sage will be present in all future logs of the leader.
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There is one more property that the original Raft consensus illustrates, which

is the State-Machine Safety ; however, due to the nature of our design, it is not

essential to maintain this safety property as explained later. Compared to the original

Raft algorithm, the major change for our design is the ability to have the servers

communicate independently and also have them send data to the leader to request

for an update of the data logs. This means the remote procedure call (RPC) messages

that are used in the original Raft as well as the protocol itself must be modified so

that they fit into our design.

First, we explain the RPC requests that are used in the modified algorithm. We

then review every stage of the information-sharing process to make the whole proce-

dure clear. The Raft algorithm proposed the following two RPCs: RequestVote and

AppendEntries. However, the ISRaft utilizes a modified adaptation and a couple of

other RPCs as follows:

• RequestVote: This is initiated by candidates in the cluster. This RPC will be

sent anytime a server hasn’t received any heartbeat message from a leader.

• AppendEntries: This is initiated by the leader of the cluster. This RPC is sent

as a request to replicate the log on all servers in the cluster. This message is

also used as a heartbeat when no log entries are attached to the RPC.

• AppendEntries-Response: This is a response that is initiated by any server

receiving AppendEntries RPC. The RPC contains the data to be appended as

well as the signature of the server.

• RequestAppend: This is initiated by any server in the cluster to add information

to the log.
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3.2.1 Architecture of the ISRaft

In our setting, a server in the cluster can be in one of the three states: leader,

follower, or candidate. A leader is the only authority that can append entries to

the log. The other servers can only request the leader to append messages. This

prevents the overflowing and message duplication problems. Servers on the cluster

have the certified public-key of all other servers. Therefore, when a server sends any

RPC request message, he signs it with his own private-key. Servers reject any RPC

message that does not include a valid signature. Any public key cryptosystem (PKC),

such as RSA, can be used in our model. When a leader appends a message from

the RequestAppend RPC, he adds the public-key of the requesting server to the data

log. This way, every data log entry can be traced to the server that has initiated the

request.

Similar to the original Raft, our ISRaft algorithm uses terms. These terms are

numbered with consecutive integers starting from 1. It is incremented every time a

new term is declared by the leader. Every term begins with an election, i.e., a process

by which the candidate servers send a RequestVote RPC to the cluster. When a

candidate receives the majority of votes in the cluster, e.g., n/2 + 1 for a cluster of

size n, he declares himself as the new leader and then he increments the term number.

The leader can then append the new message to the data log and share it with the

servers in the cluster. Any new entry in the data log contains the hash of the previous

entry, which can be computed by all servers. To compute a hash value at index i,

the server computes the hash of the data at index i− 1. When two servers agree on

a hash value for index i, they verify to make sure they have identical log entries up

to index i.
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Figure 3.1: PRCs that are used in this model.

3.2.2 Leader Election

The first step of the algorithm is to elect a leader server from all servers in the cluster.

All servers start their life as a follower, a state in which the server awaits a heartbeat

message from a leader in the cluster. If no message was sent after a predefined period

of time, called election timeout, the follower changes its state to a candidate. It then

begins the election process. The candidate server increments the current term and

he sends RequestVote RPC concatenate with its own signature to all servers in the

cluster. A follower or a candidate server that receives the RPC with a valid signature

will send a vote if and only if the following conditions are met:

1. The server is a follower or a candidate.

2. The server has not received any heartbeat message from the current leader.

3. The new term is, at least, the current server’s term plus 1.

4. The RequestVote is signed with the candidate private-key.

A server that receives the first RequestVote RPC for any term will hold the first

vote until the end of the election timeout. If no other RequestVote RPC arrives, it will

vote for the first candidate. However, if a second RequestVote RPC arrives during

that time from a different server, it will immediately vote for the second server. This

is to prevent a case where a server starves the system by initiating election constantly.
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When a server replies with a vote, it will update its term number and change its

state to a follower. The server will then wait for the first heartbeat message from the

elected leader, and if none arrives at the expected time, it will become a candidate

himself. A candidate wins the election if he received the majority votes from the

cluster. The elected leader then changes its state to a leader and sends a heartbeat

AppendEntries message that includes the signed vote messages that he received from

the servers in the cluster. This will be a proof of election and also prevents a self-

promoted leader.

While waiting for votes, a candidate may receive an AppendEntries RPC from

another server claiming to be the leader. If the term in the RPC is at least as large

as the candidate’s current term and the RPC message contains the signed votes of

the majority servers, the candidate recognizes that server as the actual leader and

returns to the follower state. Otherwise, the candidate rejects the RPC and continues

to remain in the candidate state.

3.2.3 Log Replication

In our setting, each follower can request an update to the data log from the leader via

the RequestAppend RPC. This RPC contains the signature of the requesting server

and the data itself. The signature guarantees the authenticity of this request, which

prevents the malicious servers from forging other server’s requests. The server sends

the RPC to all other servers in the cluster including the leader. This is to prevent

manipulation of data and also to guarantee the leader receives the message in the

case a new leader has been elected without the followers’ knowledge. The leader then

validates the message’s signature and begins the data appendance to the data log.

To start, the leader updates its own data log with the new data and increments

the term. It will then send AppendEntries RPC to all servers in the cluster. This

message contains the new data log entry to be appended and all signed votes from
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the majority of the servers in the cluster. When a server receives the AppendEntries

RPC, he performs the following tasks:

1. Compares the log entries received from the leader and the requesting server. If

the leader itself has requested the update, he skips this procedure.

2. Verifies if the leader’s term is at least equal to the requesting server’s term.

3. Validates if the leader’s votes are legitimate.

4. Verifies if the hash of the RPC message is the expected hash value.

If all these conditions are satisfied, the server appends the message to the log.

Otherwise, the server will reject this message, and if no other AppendEntries message

arrives in the chosen period, the server becomes a candidate. When a server first

receives the message from the leader, he will respond with the AppendEntries response

to all servers in the cluster. A server commits the appended data log only when he

receives a similar AppendEntries response from the majority of the servers for the

same term and data. There might be a case where a server sends the RequestAppend

RPC to the cluster, including the leader with the data to be appended, but the leader

sends the AppendEntries RPC without the appended data. This can happen if the

leader never receives the RPC from the server, or if the leader is malicious. In both

cases, the servers in the cluster will not be able to commit the data log, and as a

result, the requesting server will keep sending the RequestAppend.

3.2.4 Validation

Servers constantly validate their data log with every heartbeat message from the

leader. The hash value of the latest data log needs to be in correlation with the server’s

last data entry. It’s also necessary to validate the integrity of the message. This can

be done by analyzing the data log itself. Our model doesn’t restrict any type of data
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Figure 3.2: Data log example.

to be appended to the log, therefore, servers can send any unrestricted data, i.e., our

setting doesn’t address this type of validation. However, future implementations can

have special validation mechanisms to define specific restrictions on the data to be

appended.

As an example of validation, we can refer to a cluster that manages relatively

complex equations that can be verified by servers. A server can send an equation

along with its solution to a cluster. Subsequently, if the majority of parties verify

this solution as a correct one, the server then commits it to the data log.

3.3 IMPLEMENTATION

We implemented the proposed model with C, as a low-level programming language,

so that it can be executed on resource-constrained devices that have limited memory

and computational power. This implementation also prevents overheads that might

be imposed by higher-level programming languages.

The initial program was executed on a Linux environment and then ran on 10

Raspberry Pi’s Model 3, all with similar properties, i.e., same clock speed and memory

usage. Note that we had to use a programming language that supports the unusual

communication properties of RPC when compared with TCP/IP or other protocols.

The later model was then implemented on AWS servers, where we had the capability

to turn on and off any number of small servers as needed. Some servers in the system
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were then given the ’malicious’ flag, which causes it to act in a non-deterministic way,

e.g., spreading false messages, not replying to votes, and clogging the network. In

an alternative implementation, we incorporated partitions into the cluster in order

to measure and analyze the time it takes for a cluster to elect a new leader and

operate when a partition is placed and/or removed. Our implementation is available

at: www.github.com/Morters/Raft C.

3.3.1 Implementation Architecture

As stated earlier, our ISRaft design was developed by C with IPC and RPC libraries.

After establishing the commands, it was tested with CuTest on a Linux environment

to evaluate its operation. The code is then compiled and ran on a few Raspberry Pi

3-s, and later on multiple Amazon AWS EC2 servers, each operating as a node and

communicating with other EC2 servers on a RPC protocol over socket communication.

The EC2 servers that we used are t2.nano with 512 MiB of memory and 1 vCPU

running at 3.3 GHz. We implemented the RPCs as functions where each RPC can

be called by every node on the system. The functions and protocols are organized

in the header file CRaft.h.Our major goal was to make the minimal changes needed

to achieve the same security level as the original Raft. We also intended to make

our implementation modular enough so that it can be executed on the majority of

devices. Every server was built as a separated AWS EC2 Apache that is identified by

a unique IP address and ID.

In our implementation, the servers can send data over socket communication,

however, any communication protocol can work. Every server then generates an RSA

private-key and public-key pair that is shared with the cluster. Every time a new

node enters the cluster, it is required to send its credentials to all servers in the

cluster. Accordingly, all servers are required to update their server database. Our

implementation does not address a case where there is an error with the credentials
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or when a server is disconnected from the network since these are out of the scope of

our work - although they can be addressed by other mechanisms.

Every server has a raft data structure that contains necessary information regard-

ing that specific server. The state includes: current state - current state of the

server; current term - integer term number; voted - a flag that states whether the

server voted for the current term or not; and datalog - chain of datalog entries. The

datalog size is limited to the storage capability of the server. The log can be stored

and accessed on a cloud secured server, however, our design uses an offline information

sharing model in a closed environment.

The next phase is to test how our ISRaft addresses malicious behaviors. To vali-

date this, we created specific nodes, called ‘malicious, ’which act in a non-deterministic

way as explained earlier. For an easier implementation, we used Python to inject these

malicious nodes into the cluster randomly. The malicious nodes could have message

droppings, datalog mismatching, message duplication, to name a few. For the parti-

tioning, we simply restricted the communication among different servers to simulate

a network crash. When needed, the partition could be lifted by reconnecting the

servers. Below are our RPC pseudocodes:

3.4 ANALYSIS OF OUR ISRAFT

The analysis of our model contains two parts. We initially compare the ISRaft with

similar consensus algorithms. Subsequently, we analyze the correctness and efficiency

of our model, especially when it’s compared with the original Raft algorithm and the

similar Tangaroa Raft implementation.

3.4.1 Comparison

The comparison, shown in Table 3.3, is partially based on Bamakan et. al. [118]

where several consensus algorithms were evaluated with the same criteria. The first
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Algorithm 1 RequestVote RPC

Request

hashed req vote /* Vote for the server initiating the RPC */

Response

user term ← current term number

voted ← 0 /* Flag of the server vote */

if candidate term < user term then return ERROR

else if voted ! = 0 and candidate ID ! = NULL then

vote ← Encrypted(candidate votes)

end ifreturn SUCCESS

Algorithm 2 AppendEntries RPC - Request

log entry /* Log data to be added */

leader term /* New log term */

signed votes /* Cluster votes of the leader. Data is encrypted

with the private-key of the servers and will be decrypted with the

public-key */

comparison aspect is the type of chain that the model will most likely be implemented

with, e.g., whether the model is using blocks or log. This can be determined by a

number of factors, however, for this comparison we simply take the most commonly

used chain method for each of the models. Our ISRaft as well as Tangaroa are based

on the original Raft algorithm, therefore, they use a similar log-based chain method.

Paxos and BFT are based on achieving consensus among parties without having any

logging method such as block/log.

The second criteria is the type of Blockchain. Generally, the permission-less and
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Algorithm 3 AppendEntries RPC - Response

n /* The number of servers in the cluster */

user term /* The latest term of the current server */

prev log entry /* The previous log entry */

if leader term < user term then return FALSE

else if sec check ! = TRUE then

/* Check if the signed votes are valid for at least 1/2n+1 for n

servers in the cluster */ return FALSE

else if leader.prev log entry ! = user.prev log entry then return FALSE

end if

log.append(log entry)

if leader term > current term then

current term ← leader term

end ifreturn SUCCESS

Algorithm 4 RequestAppend RPC

log entry /* The entry to be appended */

send encrypt(log entry) /* Encrypt with private key */

the permissioned are the two main ways for using Blockchain. Permission-less is also

known as public, whereas the other is private. PoW is a permission-less Blockchain

where the consensus can operate on an open environment and it is proof-based. The

Raft, Paxos, Tangaroa, and BFT are permissioned Blockchain meaning that they

operate on a closed environment with some sort of centralization with servers-client

communications. Our ISRaft is somewhere in the middle. It was designed to run on

an open environment where all nodes operate with the same consensus algorithm and
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new nodes can join the clusters. The election, however, is voting-based that is similar

to most permissioned Blockchains.

Third comparison is the trust model. The network can be fully-trusted where the

entire network communication is moderated and all nodes can be trusted; semi-trusted

where part of the network can be moderated and access is granted only to trusted

nodes; and finally, un-trusted where the network is not moderated. Our ISRaft is

categorized as semi-trusted, however, it can be easily modified to be un-trusted if

needed. In the un-trusted model, servers can join and leave clusters without approval

as long as they provide the appropriate public-key.

The degree of decentralization shows how the model is decentralized in compar-

ison to others. When a models’ node is dependable on other nodes, the degree of

his decentralization is weakened. The original Raft, for example, has low degree of

decentralization since different commands can only be initiated by the client to the

servers.Our ISRaft is different from all other permissioned algorithms due to the fact

that it has a high decentralization degree as the nodes can communicate with each

other and achieve a consensus without the intervention of a server node. The scalabil-

ity is how well the model can operate on a larger scale, requiring more computational

power and resources. Our ISRaft is not different from the original Raft consensus

algorithm form this perspective. The last comparison is the percentage of byzantine

nodes the model can tolerate. Our ISRaft is an upgrade to the original Raft as the

algorithm can tolerate up to 50% of byzantine nodes.

Figure 3.3: Comparison of consensus algorithms.
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3.4.2 Efficiency Analysis

Our implementation used EC2 Amazon servers running in a cluster. Each server is

an EC2 instance that uses multi-threading as part of its infrastructure. The efficiency

tested in this section is the average time it took for a cluster to achieve consensus for

the same election timeout value. The comparison of the model is done only with the

original Raft and the similar modification of Raft, named Tangaroa [117]. Tangaroa

was implemented using similar tools as our ISRaft.

The algorithms were then tested on different similar environments: one with no

malicious node active and another with 20% of malicious nodes who can operate in

one of three ways: Holding messages, pretending to be different servers in the cluster,

or sending random messages.Each malicious node was given a random assignment to

either one of these operations.

Figure 3.4: Algorithms latency with different % of malicious servers.

Figure 3.4 shows the result of our implementation with respect to the network size

(number of nodes) and the total latency of the network for all communications. The

latency was calculated by having each node store the time it initiated the command

and have it reduced from the end time when the command reached all other nodes.

The Raft operates faster than ISRaft and Tangaroa in a network with no malicious

modes. This is due to the fact that the servers had to store the entire cluster’s keys
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and many RPCs so that they operate properly, whereas in other models, the nodes

only require to store the log and term.

Malicious nodes have a significant effect on the operation of the classic Raft algo-

rithm. The results were always inconclusive as the model kept stalling and messages

were not passing through. This is why the original Raft model was not fully tested in

this malicious environment. The ISRaft and Tangaroa were both capable of handling

20% of malicious nodes and were given similar results as the one with no malicious

nodes.

This analysis illustrates that the original Raft is incapable of handling malicious

nodes and it is much faster on a large scale than our ISRaft. However, in real-

world applications where malicious nodes exist, the ISRaft operates as expected.

The main difference between our ISRaft and the Tangaroa is that the Tangaroa is

not as decentralized as our ISRaft and it is required to operate under server-client

communication whereas our ISRaft is fully decentralized.
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CHAPTER 4

CONSENSUS ALGORITHM FOR AUTONOMOUS UNITS

4.1 INTRODUCTION

Autonomous units can operate under many different operations and models. Much

like a human, each unit is required to make decisions and be able to communicate

and act upon it. Comprising many small individual nodes, autonomous units in

decentralized fashion have no centralized authority to guide them. Instead, they rely

on individual communications in order to complete tasks, achieve consensus and share

information [119]. These groups are robust, flexible and scalable, which allows them

to complete many different tasks in different fields. Decentralized autonomous units

contain many individual nodes with several advantages. The loss of a few nodes will

not affect the system, contributing to its robustness. Flexibility is possible because

of simple communications that take place between nodes, and scalability works since

this method of operation can work together with different numbers. Autonomous

units can be applied in fields that deal with data collection and management. Some

examples are exploration, surveillance, and data classification. The methodologies of

such systems are efficient by themselves, but when implemented with other blockchain

technologies, many new opportunities arise.

The Blockchain infrastructure was introduced in 2009 through the creation of

Bitcoin. Bitcoin required the nodes of a system to come to a consensus in order

to append blocks to the blockchain. In most blockchain systems, the Proof-of-Work

(PoW) consensus protocol is used. However, this protocol is known to be slow and

energy consuming, which makes it impractical for many applications. Blockchains
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are being established in many fields of technology in order to improve security and

provide features such as decentralization. One of these applications is in autonomous

driving [120], where security is extremely important in order to establish autonomous

vehicles that are reliable and safe. Blockchain technology has also extended to Robot

Swarms. The presence of a blockchain in robot swarms allows for these nodes to have

easier and more efficient communication. Blockchains allow robot swarms to have

access to shared knowledge while still retaining the individual communications that

take place in swarms. Furthermore, the immutable characteristics of the blockchain

also enable robot swarms to be more secure and reliable in terms of data storing and

sharing.

This dissertation therefore proposes an alternative version of the Information

Sharing Raft (ISRaft) consensus protocol [121] to allow communication among nodes

in a secured fashion while maintaining the security features of the original ISRaft

algorithm even in the presence of adversarial nodes. ISRaft builds upon the Raft

consensus protocol that achieves consensus through the process of leader elections,

voting, block generating and validating. ISRaft differs from the original Raft by

adding Byzantine Fault Tolerance, allowing all nodes in a network to request data

changes, validation of any data types, and adding reputation value to each node.

In ISRaft, individual nodes in the system are able to communicate with each other

through Remote Procedure Calls (RPC).

4.2 ISRAFT CONSENSUS PROTOCOL

In this section, we present the ISRaft consensus protocol in a closed and isolated

network. ISRaft protocol uses similar fundamentals as the original Raft algorithm, i.e,

Leader Election and Server Communication. In addition to modifying these features,

this new design includes a trust value, message validation and security features in the

presence of an adversary.
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4.2.1 Design Overview

The main idea of ISRaft protocol is to have all nodes in the cluster to hold an agreed

upon ledger, containing messages of communication among different nodes. A node

in the cluster can be in one of the three states: follower, candidate or leader. A leader

is the only authority in the cluster that can append blocks to the chain, making it the

miner of the current block. The other nodes can send messages to each other and the

leader, and the leader then has the responsibility to distribute the message among all

other nodes. For simplicity, communication among nodes in the network is done via

RPC messages for minimum coding and faster initialization.

1. Asymmetric Encryption: Each node is initialized with a pair of crypto-

graphic keys used for authentication and signature. The public-key is submit-

ted and logged into a registry that holds all identities in the network. Other

nodes will receive an update whenever a new node joins the network. Whenever

a node sends any RPC message, he signs it with his own private-key. Nodes

reject any RPC message that does not include a valid signature. Any key pair,

such as RSA, can be used for the purpose of this model. This also helps with

tracing back messages when a trust is broken between nodes.

2. Permissioned Blockchain: New nodes need to go through an enrollment

process where a key pair is initiated and stored on the registry along with its

address, trust value, and other required parameters.

3. Secured Channel: For simplicity, we assume that the communication of the

nodes is done on a secured channel, without the possibility of having a man-

in-the-middle attack. This, however, can be easily addressed in future works.

Furthermore, communication is done via RPC messages, signed by each node.

As mentioned, a node in the system can be in either one of the following identities:

follower, candidate or leader.
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� Follower: This state is the initial state of a node upon joining the network.

While in this state, the follower operates under the current leader of the cluster.

If a follower node wishes to add anything to the chain, the leader needs to first

validate the message, and only then it can be committed. A follower receives a

stream of heartbeat messages from the leader to make sure it is updated to the

last block. A heartbeat message is sent every short period of time, called election

timeout, and it can include new transactions, data and/or leader change.

� Candidate: When a follower does not receive heartbeat messages within some

predetermined period of time, it automatically changes its state to a candidate.

While in this state, the node sends a request-vote message to all other nodes in

the cluster, asking for their vote so that he can become the leader, and so the

miner of the next block. A candidate can not vote for himself.

� Leader: A candidate can become a leader when he receives at least n/2 + 1

votes in a cluster of n nodes. A leader has the responsibility to mine the next

block, and to send heartbeat messages to all nodes in the network.

Trust between two nodes plays an important factor in this ISRaft protocol. Trust

represents the confidence in which nodes rely on each other. Let Pi be a node with

a public-key identifier i. Pi then holds a trust value associated with each node in

the network. The trust value assigned by Pj to Pi is then T j
i . This value is in the

interval [0, 1]. These values are unique and do not have to be symmetric, i.e., T j
i ̸= T i

j

[122]. When a node sends an RPC message of any kind (excluding heartbeat message

and responds) to the other nodes in the network, the recipients immediately decrease

the trust value of the sender by a fixed small amount. This is done as a way to

reduce the total number of messages that can be sent every single second, decreasing

the possibility of overflowing and DDoS attacks on the network by any node in the

system.

83



ISRaft uses the following RPCs for its operation:

� RequestVote - This RPC is sent whenever a candidate is calling for votes.

� RequestAdd - Every node in the cluster can send this message to the leader,

asking for some data to be added to the next generated block.

� AppendBlock - The leader can send this message whenever a new block is mined.

This can happen every fixed time, or by the decision of the leader.

� ApproveCommit - After a new block has been added to the node, he sends this

RPC back to the leader.

These simple RPCs are what makes this consensus protocol easy to implement and

operate in resource-constrained devices.

4.2.2 Leader Election

For this protocol to work, a leader must be elected. This process is done automatically

when no heartbeat message is being sent over election timeout. After that period of

time, the follower node changes its state to a candidate and he begins the election

process. During this time, the node sends RequestVote RPC concatenate with the

latest block number signed with his private-key signature to all nodes in the cluster.

A follower or a candidate node that receives the RPC will then send a vote if and

only if the following conditions are met:

� The node has not received any heartbeat messages from the current leader.

� The latest block number is at least equal to the current node’s term plus 1.

� The RequestVote RPC is signed with a valid candidate’s private-key.

� The trust value T of the sender is at least 0.5.
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A node that receives the first RequestVote RPC will hold the first vote until the end of

the election timeout regardless of the candidate’s trust value, as long as the candidate

fulfills the conditions. However, in the case where more than one RequestVote arrives,

the node will choose who to vote for based on the trust value. A candidate with a

higher trust value T will have a higher chance of getting the vote. A leader is elected

when he receives the votes of the majority of the cluster. At that point, the elected

leader sends out an RPC that includes the signed vote messages that he received

from the nodes in the cluster. This acts as a proof of election and also prevents a

self-promoted leader. All other nodes in the cluster then increase the trust value of

the appointed leader by some fixed amount. This can be seen as a reward given to

the elected leader who will then mine the next block.

After the new leader has been elected, he starts sending heartbeat messages con-

taining the signatures of all other nodes who voted for him as a continuous proof of

his leadership. If a new node was not aware that a new leader had been elected, the

heartbeat message serves as an update for the node to follow. A leader is elected for

a limited amount of time, called leadership term. At the end of this term, the leader

gets to mine a new single block added to the chain and then a new election process

begins.

During the election process, a node can receive a heartbeat RPC from a different

node claiming to be the new leader. If the block number of the new heartbeat is at

least higher than the block number of the previous heartbeat message, the node will

recognize that new node as the leader and will follow the new leader. Otherwise, it

will reject the heartbeat RPC and will continue with the election process.

4.2.3 Block Generation

Every leadership term ends with a block being appended to the chain. A newly

created block has the following data, as shown in Figure 4.1: block number, block
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Figure 4.1: Example of ISRaft blocks.

hash, previous hash, block leader, timestamp, and data array.

When a follower node intends to add data to the block, he sends a request via

the RequestAdd RPC. This RPC is signed by the requesting node. The signature

guarantees the authenticity of the request, which prevents a malicious node from

forging another node’s request. This RPC is sent to all nodes in the cluster including

the leader. This is performed for two purposes: To prevent manipulation of data, and

to guarantee that a leader will receive the data in the case if a new leader has been

elected without the node’s knowledge. When the leadership term is coming to end,

the leader begins the new block generation process by hashing the value of the new

block and sending the AppendBlock RPC to all nodes in the cluster. This message

contains the hash value of the block to be appended and all signed votes from the

majority of the nodes in the cluster. When a node receives the AppendBlock RPC,

he performs the following:

1. Compares the hash in the RPC message to make sure it is the expected hash

value,

2. Verifies if the block number is larger than the last committed block, and

3. Validates if the leader’s votes are legitimate.

If all conditions are satisfied, the node increases the trust value of the leader and

sends a signed ApproveCommit RPC to the leader. If the majority of nodes in the

network send this approval message, the leader can then send a second RPC that
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includes the signed approvals of all nodes in the network. When a node receives the

second RPC, it commits the new block to the chain.

4.2.4 Data Update and Validation

Nodes are able to add data to the block through a request made to the leader of

the current term. The leader then decides to store the information received from the

nodes into the next block. The data is locally stored in a 2D array on each node,

where the first dimension is the number of nodes in the network and the second

dimension is the decision made by each one. The decision of each node will be visible

to others and will be used to modify the trust values of other nodes.

Every task is bound in time, and during that time, it is expected that the system

will achieve a consensus. Examples for such tasks can be learning the color of the

surface, reading texts, or identifying threats. When a node makes a decision and

commits it to the blockchain, other nodes can read that decision and change the trust

value of that node accordingly. For example, if the system needs to identify the color

of the surface, each one of the nodes will read the color and submit its decision to

the current leader, who will in turn commit these decisions into the next block. At

the end of the task, the last block can be read to make a final decision and validate

it. The validation process heavily relies on the trust values of nodes in the network.

When a consensus is required, the reputation value of each node is calculated based

on individual trust values, which is defined as follows [123]:

Definition 4 Let T j
i be the trust value assigned by Pj to Pi. Let Ti be the reputation

function that illustrates how trustworthy Pi is:

Ti =
1

n− 1

n∑
j ̸=i

T j
i

At the end of a task, all reputation values are calculated and are used as the weighted

value for each node’s decision. This can be written as D =
∑n

i=1 Ti · P d
i , for decision

D, n number of nodes, and P d
i as the decision of single node i.
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4.3 EXPERIMENT

4.3.1 ARGoS Simulator

For the purpose of testing and evaluating ISRaft consensus protocol, the ARGoS

simulator was used [124]. ARGoS is a swarm robotic simulator that is able to simulate

large-scale swarms for any purpose. In our research, each robot acts as an independent

ISRaft node, operating under the same guidelines detailed in the previous sections.

Each node was given access to a running ISRaft network and was able to read and

receive commands by having a unique identifier in the network.

A single node was able to execute commands either willingly (such as the heartbeat

messages) or through a client controller running simultaneously. This was used for

testing malicious activities such as message droppings, or messages that were not part

of the original protocol.

The experiment was conducted as a simulated computer cluster with similar hard-

ware to small mobile phones - a single core with 1.5GHz and 2 GB of memory. A total

of 20 nodes operate with the ARGoS Simulator where the output data was carefully

monitored by a 3rd party operator.

4.3.2 Setup

A total of 20 nodes were used in the experiment similar to [125]. The goal of this

experiment was to help a set of autonomous units to make decisions about the colors

of tiles in a 20 × 20 grid of black, white and gray tiles. The colors of these 400 tiles

were randomly selected. For simplicity purposes, the nodes were able to communicate

with each other freely, without distance restriction.

At the beginning of the experiment, each node was set to hold the data type that is

relevant for this specific experiment. A 2D array was initialized as char arr[20][400]

where the first dimension was the number of nodes in the cluster and the second di-
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mension was the number of tiles in the system.

The experiment was set as follows: when a node stands on a colored tile, it reads

that color. Upon success, the node then sends the signed RequestAdd RPC to the

cluster including the tile number (1 to 400) and the color it reads. The leader receiving

the RPC will then change the data of the 2D array at the location of the requesting

node with the tile number and color reported. After some time, the leader will then

send the AppendBlock RPC to the cluster with the new changes. A node receiving

the RPC will then check to see if it has already read the color of that same tile. If yes,

he will compare the results. If it is a correct color, the trust value of the reporting

node will be increased, otherwise, it will be decreased. At the end of the experiment,

the reputation value for each node is calculated and the decision for each tile is made

based on the reputation values and reported colors. If, for example, tile 4 had 2

votes: a node with reputation 0.45 voted “Black” and a node with reputation 0.8

voted “White,” the final decision will be “White.”

During the experiment, Byzantine nodes were added to the cluster to see how

the trust values are changed based on false messages. These Byzantine nodes always

report wrong colors.

4.3.3 Technical Results

The experiment ran 35 times with different election timeout values ranging from 1 to

100 millisecond (assigned randomly) for a total of 5 minutes for each experiment. At

the end of each run, we calculated the percentage of correctly voted tiles, noted as

CV Tn for experiment n.

For each experiment with the same number of byzantine nodes, we averaged the

CV T value to get these results:
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As shown above, despite the decrease in CV T value when more byzantine nodes

were added to the experiment, the overall value never went below 90%. This illustrates

that the validation process along with the calculated trust values help in maintaining

correctness of the model.

4.4 CONCLUSIONS AND FUTURE WORK

ISRaft is a consensus protocol that can be implemented among autonomous units in a

secure data sharing environment. This protocol makes it possible to achieve consensus

in the presence of adversarial nodes. Moreover, by using trust and reputation values,

it becomes possible to validate the authenticity and correctness of the shared data.

This can be easily implemented on resource-constrained devices and our model works

perfectly in any infrastructure where regular encrypted communication methods can

negatively affect the performance of the system.

In our future work, we will expand the implementation of ISRaft to deal with

different tasks. We will also implement the protocol on real autonomous units to see

how it operates in real-life scenarios.
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CHAPTER 5

LOCALIZED STATE-CHANGE CONSENSUS (LSC)

5.1 INTRODUCTION

Blockchain technology began its popularity in 2008 with Satoshi Nakamoto’s new

peer-to-peer algorithm and his innovative way of achieving consensus among per-

missionless users called Proof-of-Work[22]. Ever since, more and more algorithms

emerged with similar yet different methods of achieving consensus. Famous ones are

the Proof-of-Stake[24], Proof-of-Authority and many more. Although Satoshi’s initial

motivation was to use the proposed algorithm as a digital currency, it has recently

been implemented in many other fields, such as health care, supply chain, information

sharing and more...

The Blockchain technology allows users to validate and secure immutable data

which is replicated across the majority of users, giving the unique decentralization

quality to it. Nowadays, most exchanges, whether it’s a transaction or any other

form of data, are being monitored and accepted by a trusted third party member

(healthcare, banking, etc...). The reason is that if the exchange is not monitored, some

people might share false data, making the exchange untrustable. The decentralized

solution aims to solve this issue by executing a consensus algorithm designed to

validate any report of data without the need for any third-party organization. More

specifically, the data is stored on immutable blocks containing data. Every given

time, a new block is added to the chain by an approval process called ’mining’.

Different algorithms have a different mining process, however, the end goal is the

same for all - the miner of the block gets rewarded. In some of these consensus
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algorithms, the process and validation of data is pre-defined in a way that users can

execute it automatically by running a simple server that can operate independently.

This is why new blockchain applications have extended to autonomous fields such as

robotic swarms and autonomous driving[120] where a communication is made between

machines.

5.1.1 Decentralized Autonomous Units

The first time the blockchain data structure was introduced was in 1990 by Stuart

Habert and W.Scott Strornetta [19] and was originally intended to timestamp digital

documents making them tamper-proof. Over the years, blockchain data structure

has expanded to many other fields, such as economy, e-voting, assembly line, etc.

Many of these applications do not rely on cryptocurrency exchange, rather the users

exchange information in a decentralized fashion. Different decentralized applications

are classified as either public, federated/consortium or private. Public systems do

not have any restriction on peers, and it doesn’t require any authentication process

for when joining the network or initiating trades. The public decentralized system is

maintained only by the public community, which means a higher level of decentral-

ization. Private, or permissioned system, operates under the leadership of a group

often called ’consortium’ and is the only group that can manage the system. Private

decentralized system is a special type of permissioned system, where the network is

managed by only one governing organization. These types of systems implement a

registration process where a user has to go in order to be able to execute transactions.

Autonomous Units (AU) rely heavily on communication in order to operate prop-

erly, complete tasks and share information [119]. This is why a decentralized solution

can be great for handling secured and immutable communication for AU. Autonomous

units are required to be flexible and scalable, in order for them to operate in many

fields and scenarios. Decentralized autonomous units can contain many individual
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nodes and the loss of a few nodes should not affect the system, contributing to its

robustness. This realization led to the emergence of more and more Decentralized

Autonomous Organizations (DAO), or Decentralized Autonomous Corporation

(DAC), which are blockchain-powered organizations that can operate independently

without any central authority. Users can make decisions and are able to communi-

cate in a decentralized fashion by a set of self-execution rules without the need for a

mediator intervention.

Autonomous unit solutions are considered different from the crypto solutions that

are mostly deployed on public decentralized systems. There are similar concepts

such as the requirement for consensus and blockchain architecture, however there are

many differences such as the requirement for the blockchain to be lightweight, having

a secured way of communication, and having a control over the users who join and

leave the network (permissioned). Some examples of unique AU tasks are exploration,

surveillance, and data classification.

5.2 DECENTRALIZED SOLUTIONS FOR STATE CHANGE ANDAU-

TONOMOUS SYSTEMS

In this section, we briefly review research works that proposed blockchain based mech-

anisms in autonomous and state change applications. ISRaft was first introduced

in 2021[7] as a modified classical Raft [113] algorithm designed to handle Byzantine

nodes and to improve the server-to-client communication from the original algorithm.

Users would hold elections every fixed amount of time called election-timeout, and

the selected leader would then have the responsibility of ’mining’ the next block in

the chain. LSC relies heavily on that idea, however, it differs greatly in its design and

its state-change methodology. Other similar papers can be broken down into systems

which rely on state change to operate successfully and systems which are usually run

with autonomous units deployment.
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Wang et al. [126] present an overview of the definition of Decentralized Au-

tonomous Organization, and are setting standardization for DAO systems. This can

be summed as ’Distributed and Decentralized ’, ’Autonomous and Automated ’ and

’Organized and Ordered ’. LSC successfully accomplished each of these characteriza-

tions by nature and therefore can be seen as a DAO subsystem we call Decentralized

Autonomous Units, or DAU. The design of this consensus algorithm is meant to be

thus implemented in autonomous units that require no human intervention such as

communication between drones, smart cars or nanobots, which is required for the

system to achieve an automated consensus in an organized fashion.

Moniz [127] presented a synchronized state machine consensus algorithm called

Istanbul Byzantine Fault Tolerance (IBFT). It is a consensus algorithm designed to

handle Byzantine-fault tolerant users in the Quorum blockchain. This algorithm is

mostly used for state machine replication (SMR), namely achieving a consensus on a

single state for multiple machines. Because of its low communication complexity, it

can be considered a scalable solution. However, it is designed to only handle a single

set of states, making it inflexible for different environments. Wei Ren [128] proposed

a mechanism for achieving consensus among multi-vehicle systems. This consensus

is designed to handle situations where only a portion of vehicles in the system can

have access to a reference state. The consensus is achieved under the assumption of

partitioning and can handle vehicles that cannot have access to the reference state.

Ferrer [29] describes how blockchain technology can be used as an innovative solu-

tion for deploying robotic swarms. This solution relies on the immutability property

of the blockchain to solve problems that can occur in a non-blockchain deployment.

This solution uses proof of work to achieve consensus, however, it can easily modify

to fit other algorithms. Strobel et al. [125] designed a robotic swarm system that

uses a blockchain approach in a collective decision-making scenario where a consensus

is achieved on the total tile colors in an environment of black-and-white tiles. This
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research is designed to handle byzantine-nodes by using blockchain-based smart con-

tracts. The Byzantine nodes can easily be identified and excluded from the swarm.

This research focuses primarily on achieving a consensus on a specific task and is

deployed on the Ethereum network. Queralta et al. [32] improves the communication

between autonomous units using blockchain technology. Proof-of-Work consensus is

used to measure resources and the Proof-of-Stake is used to validate transactions.

This design is suitable for either permissioned or permissionless blockchains with the

use of a Single Longevous Blockchain that utilizes ad hoc collaboration in order to

allow new nodes to enter the system. This design also includes a ranking mechanism

similar to other trust models. However, nodes are not chosen based on their rankings

or their level of trust.

5.3 NOTATIONS, DEFINITIONS, AND PROPERTIES

LSC is a scalable decision-making election-based consensus algorithm. This means

that unlike many other blockchain implementations, which have mainly focused on

achieving a consensus for the transactions on the ledger, LSC is designed to achieve

consensus on the validity of the data that is written on the chain. In other words,

LSC is designed to provide decision based consensus by validating the information

sent between users.

This dissertation nonetheless describes LSC under the context of a permissioned

blockchain. Users must have prior-knowledge of all other users and their signatures.

When a new user joins the network it is then undergoing a series of enrollment pro-

cesses, where it is assigned a pair of cryptographic keys and a trust value. Among

the protocol’s immutable communication, LSC also includes a state-change validation

process where a group of users can change a state of some external information. It is

then undergoing a validation process that includes the comparison of trust values and

state reading. If the validation data is accepted by the majority, the state will change
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and it will be reflected on the blockchain. Two major properties that are required for

achieving the decision-based consensus are: Authentication and Trust.

Table 5.1 covers the notations we will be using for the rest of this section.

1. Authentication: Users are assigned a pair of cryptographic keys used for

authentication of messages. When a user joins the network, it shares its public-

key with all other users. When the user sends any message, it then signs it

using its private-key in an asymmetric encryption fashion.

Formally, for key-generator G and security parameter k, a public key (pk) and

a corresponding private key (sk) are generated by:

(pk, sk)← G(1k)

Let S be a signing function that takes a private key (sk) and a string (x) and

returns a tag value (q).

Let V be a verifying function that takes a public key (pk), a string (x) and

a tag value (q) and returns accepted if the tag value matches the expected

value or rejected if not. Users verify messages (x, q) and reject any that does

not include a valid signature. For the purpose of this model, any key-pair

encryption algorithm, such as RSA, can be used.

2. Trust: Users hold a trust value T which is a numeric value that quantifies how

trustworthy other users are. This value is defined by:

Definition 5 (Reputation Value) Let Tji be the trust value assigned by uj to

ui. Let Ti be the reputation function that illustrate how trustworthy ui is:

Ti =
1

n− 1

n∑
j ̸=i

T j
i

Users update the trust value of others when an interaction is made. These

values are unique and do not have to be symmetric, ie., Tji ̸= Tij. Trust value is

used for data validation and state-change acceptance.
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These two properties are what makes LSC functional in the presence of adversarial

users. They help the network in achieving consensus for any state-change task it is

given.

As stated earlier, LSC protocol is designed to handle state change consensus for

an environment with multiple parameters, each with its own state and data. Users

on the network are tasked with achieving consensus over different states. Assuming

states can be changed by the environment, it is important for the LSC protocol to

recognize any state-change and update it on the blockchain. A good example of such

an environment will be a road system, where each road can be in either of three

states: open, semi-open and closed. The state of any road can change depending on

the amount of traffic it holds. Users can be cars driving and reading the environmental

data of the roads. When a car recognizes a different state on one road, it can begin

the state-change consensus to update the new state on the blockchain. Users who

contribute and verify the state-change will be rewarded with increasing trust value.

5.4 OUR PROPOSED LOCALIZED STATE-CHANGE CONSENSUS

MECHANISM

In this section, we cover the LSC consensus protocol as well as the 5 main com-

munication algorithms. The main goal of LSC is to allow immutable and real-time

decision-making between users on the LSC network. The second goal is to validate

messages with adjustable trust values that determine the validity of the user.

LSC achieves consensus over a set of messages constructing agreed upon blocks

through a Byzantine fault tolerant (BFT) protocol. This protocol supports message

authentication, partitioning and fast computation, all of which makes it ideal for

resource-constrained devices.
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Table 5.1: Notation Used

Notation Description

ui ith user

T
j
i Trust value assigned by j to i

ETi ithElection Timeout

PKui Public key of user i

Sigi Signature of i

dij State of data point j as seen by user i

M[Sigi, d
i
j, t1] Message M signed by i with state s

L Number of nearest users

h Number of signatures threshold

5.4.1 Design Overview

LSC consensus protocol is a method where all agents hold an agreed upon ledger

containing data. This ledger is constructed of blocks forming a chain. An agent can

be in either of the three main roles: (1) Follower, (2) Candidate, or (3) Leader. It is

also possible to be an active validator, however, it is a temporary sub-role. A leader is

the only authority that can concatenate new blocks to the chain, acting as the miner

of the newly concatenated block. Followers and candidates can add new information

to a new block by sending the data to the leader.

LSC aims at achieving consensus among agents in a highly dynamic environment

with a set of n agents where U = {u1, u2, ..., un}. Communications among agents are
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accomplished using five main algorithms. For the sake of simplicity, we assume that

the communication is conducted on a secured channel without the possibility of having

a man-in-the-middle attack. This, however, can be easily addressed in future works

by using verifiable protocols. The five algorithms are:

� RequestVote: Initiated by a candidate agent and it is sent to all other agents.

This message is sent as part of the Election Process.

� StateChange: Initiated by any agent and it is sent to L nearest agents that can

validate a given message. This message consists of the data point ID, new state,

timestamp, and signatures of agents approving the data. When a total of hi

agents sign the message sent by agent i, it is sent to the leader to be added to

the next block.

� AppendBlock: Initiated by the leader at the end of every leadership term. This

message contains the new block to be added to the chain. The agent receiving

this message is required to respond with a signed approval message.

� CommitBlock: Initiated by the leader after receiving AppendBlock approval

from the majority of agents.

� Heartbeat: Initiated by the leader and it is sent to all other agents. This message

includes signed votes from the election, latest block number, and leadership term

timer counting down to the end of the term. This message is sent periodically.

The number of required validators hi for a StateChange message is defined as:

Definition 6 Suppose n is the total number of agents in the network and Ti ∈ [0, 1)

denote the reputation value of agent i. The number of required validators for the local

StateChange message sent by agent i is calculated by:

hi = ⌊
n× (1− Ti)

4
⌋ (5.1)
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A message that is proved to be correct rewards the agent by increasing the agent’s

reputation value. These five algorithms make our proposed protocol easy to imple-

ment in almost any resource-restraint device. Figure 5.1 presents a flowchart of the

leadership term process.

Figure 5.1: Leadership term flowchart.
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5.4.2 Participants

There are four roles in the LSC network: follower, candidate, validator, and leader.

1. Follower: A follower is the basic and most common role in the LSC network.

The followers’ role is given automatically for any agent who joins the network

after the registration process. Followers are what drives the system to a con-

sensus by taking part in the election process as voters as well as by verifying

any state-change event.

2. Candidate: Candidates’ role is given to followers who initiated the election

process after no heartbeat message has arrived over a fixed period of time, called

election timeout, or when the Leadership Term has ended.

� Election Timeout: Randomized local variable for any agent who joins the

network.

� Leadership Term: Fixed global variable

Candidates compete to become the next leader, who is then rewarded with a

significant increase in reputation value. Agents assign the candidate roles to

themselves willingly when the conditions are met.

3. Leader: A leader is the highest authority who is responsible for sealing the next

block on the LSC network. A leader is elected during the Election process, and

there can only be one leader for every newly generated block. Since the leader

cannot reasonably be expected to maintain a fully synchronized communication

with all other agents, it is expected that the followers will be able to rebroadcast

leader messages, excluding the heartbeat.

4. Validator: A validator’s main purpose is to verify that a given data point’s

state has changed and that the StateChange message is true and valid. The pro-

cess is fairly simple. Validators add their signature to the original StateChange
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message and then share it with nearby agents who then also get the validator

role.

This is a dynamic role and any agent can become a validator as long as it is

close enough to the data point and to another validator agent.

5.4.3 Election Process

The first step of the protocol is to elect a leader in a leader election procedure.

A leader is required to send periodic Heartbeat messages to all other agents in the

network. This message contains the signed signatures from the latest election, latest

block number, and leadership term timer. This message acts as a leadership proof.

Agents receiving this message validate the votes and check if the latest block number

is at least equal to the block number on their database. When the timer reaches 0

or when no heartbeat messages have arrived over the expected period, a new election

process begins.

At the beginning of an election, a follower agent changes its state to a candidate,

and he begins sending out signed RequestVote message, including the latest block

number to all the agents it can contact. The latest block represents the term number

of the chosen leader. For every new term, a new leader is elected. Agent um who

receives a RequestVote message will initially check the following conditions:

� The agent did not receive any heartbeat messages from the current leader.

� The candidate agent is not the leader of the current term.

� The block number from the RequestVote message is at least equal to the agent’s

latest block plus 1.

� The message has a valid signature.

If all the conditions are met, the voting agent will hold its vote for a fixed period

of time equal to Election Timeout e. During this time, if any other RequestVote
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messages arrive, it will once again check if the conditions are met. If so, it will then

compare the reputation value of the candidate agents. At the end of e, the vote will

be sent only to the agent with the higher reputation value. Algorithm 5 illustrates

the voting response process for an agent after receiving a RequestVote message.

The process ends when a candidate receives the majority of the votes, that is, at

least n/2+ 1 votes for a network of n agents. At that point, the elected leader starts

sending out heartbeat messages to the network, thus completing the election process.

5.4.4 Data Point’s State Architecture - Local Consensus

LSC runs on an environment with a set of m data points S = {d1, d2, ..., dm}. These

data points are given per environment and can be changed when redeploying the

system in different environments. A single data point can be in any number of states.

For the sake of simplicity, we will define these states as numerical values; however,

it can be any data type. As in real life environments, data point’s state can change

independently and randomly by conditions that the system is not necessarily aware of.

It is up to the system to recognize the change and validate the data on the blockchain.

The process goes as follows:

1. An agent uk recognizes a change in the state of some data points dj in the

environment.

2. uk then sends a StateChange message to the L nearest agents, called validators.

This message contains the data point ID, new state, and a timestamp.

3. Any other agent receiving the StateChange message can decide whether to add

its signature or not. When an agent adds his signature, it then sends the newly

signed StateChange message back to the sender and to his nearest L agents.

4. Steps 2 and 3 are repeated until a total of hi agents sign the original StateChange

message. The value of h is calculated by the reputation values of the agents
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Algorithm 5 RequestVote Response

Require: RequestVote Message (RVi) and Agent (ui)

Ensure: Accept or Reject RV

1: t← 0

2: RV ← RVi

3: Decrease reputation(Tm
i )

4: while t ̸= e do ▷ Election Timeout

5: if RV.block num <= len(chain) then

6: Reject RV

7: else if V (ui.pk, RV, S(RV )) == reject then

8: Reject RV

9: end if

10: if new RVj from agent uj then

11: Decrease reputation(Tm
j )

12: if Tm
i > Tm

j then ▷ Compare reputation

13: Reject RVj

14: else

15: RV ← RVj

16: end if

17: end if

18: t← t+ 1

19: end while

20: Accept RV
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and by the total number of agents (Definition 6).

5. The hi-th agent sends the message to the elected leader to add it to the next

block.

6. Once a new block is mined, all other agents in the system update the state of

data point dj to the new state.

This process happens every time an agent recognizes a data point’s state that is

different from the state written on the blockchain. Agents who validate the state

change and add a signature to the original StateChange message are called validators,

and are rewarded with reputation value upon a successful state change. The number of

validators for each state-change is given at the design level, and can be changed based

on the reputation value of the sender, whenever the system redeploys, or by forking.

The reason for this localized consensus is to prevent overloading the leaders with any

state change and to prevent a possible Distributed Denial of Service (DDoS) attack.

Algorithm 6 covers the process of StateChange message signature. This process can

also be referred to as the localized consensus process.

Agents near any state change will also likely to sign and send many StateChange

messages from different agents who repeatedly send the signed message. If the mes-

sage has already been signed by the recipient, he will neither sign, nor send it again.

Another possible scenario is to have multiple hi length signed messages of the same

origin that are sent to the leader. In this case, the leader will only add the first

message and will reject any message with the same origin. This process can be repre-

sented by an hi tree structure in which each node is an agent who signed the message

and sent it to L other nodes. Figure 5.2 illustrates an example related to this matter.
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Figure 5.2: Representation of L tree structure

Here, L = 2meaning that at most 2 neighboring agents can validate a message, and

a total of h14 = ⌊30×(1−0.333)
4

⌋ = 5 signatures are required to validate any messages sent

by agent 14, where n = 30 and T14 = 0.333. The numbers within each node represent

an agent ID. We can see that there are 3 valid tree paths: 14→ 23→ 11→ 13→ 21,

14→ 18→ 28→ 17→ 7 and 14→ 23→ 11→ 17→ 7. In this example, agent num-

ber 17 signed 2 different chains. This is valid since it is the first signature on either

path. The first path to arrive at the leader is likely to be the one added on the next

block.

5.4.5 Block Generation/Mining

Once a leader has been elected for some term t, it begins the preparations of adding

a new block to the chain. At the end of every leadership term, a new block is required

to be appended to the chain in a process called Block Generation or Mining. Every

block on the chain has the following data:

� Block Number: Also represents the term number of the current block.

� Block Leader: The agent who mined the block.

� Timestamp: The time when the block was mined.
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Algorithm 6 StateChange Signature

Require: StateChange Message M

Ensure: Signed message or Reject

1: if ifV (pl,M, S) = rejected then ▷ Sig Validation

2: Exit

3: end if

4: t← 0

5: while t! = mt do ▷ Message timeout

6: if di == M [di] then return M [Sig, di, t]

7: end if

8: read di ▷ Keep reading while message not timedout

9: t++

10: end while

� State Changes: Any data point that has been changed is added to the block.

A list of state changes with the original message and signatures is added.

� Previous Block Hash: The hash value of the previous block.

The blocks are hashed and connected by the appropriate block number and the hash-

ing value of the previous block. There can only be one leader for any single block.

Followers can add data to the block by sending a signed StateChange message consist-

ing of a list of the new data point’s states. Each of these items holds the data point

ID, new state value of the data point, original author of the message, and validator’s

signatures. The number of signatures per message is defined by hi and can be dif-

ferent among agents based on their reputation values. Agents with higher reputation

values will have to provide more signatures, hence, more validators are required to

verify the authenticity of the message. A leader will add the state-change message to

the block if and only if:
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� Enough validators have included their signatures.

� The originator of the message hasn’t already been included in the block.

There can be a case where the leader does not get any statechange messages through-

out his leadership term. In this case, the leader will simply mine an empty block

that does not contain any state change data. Figure 5.3 shows an example for block

properties in the LSC.

Once a block is ready to be appended at the end of the leadership term, the leader

sends the AppendBlock to all agents in the network. This message includes the next

new block as well as the signed votes from the election in which it won. This prevents

anyone from trying to disguise themselves as the leader. When an agent receives the

AppendBlock message, it will check the following:

� Votes are legitimate.

� Hash value of the previous block and the block number fits the latest block in

the chain. If not, the agent will update the chain from nearby agents.

If the conditions are met, the agent will send a signed AppendBlock approval back to

the leader. If and when the majority of agents in the network send the approval, the

leader can then send the CommitBlock message including the signed approvals. Only

upon receiving these messages, agents can commit the new block to the chain.
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Figure 5.3: Blocks example in the LSC infrastructure.

5.4.6 Trust and Reputation

Reputation plays a significant role in verifying messages and it can be calculated for

a single agent by averaging the trust values of all other agents. Reputation value can

be any decimal number in the interval [0, 1] (in our implementation, we set it to have

a total of 4 decimals) and it represents the confidence in which agents rely on each

other, i.e., 0 being non-trusted and 1 being highly-trusted. These values are unique

and do not have to be symmetrical, i.e., for agents ui and uj, T
j
i ̸= Tij [129].

When a follower sends a message to any other agent in the LSC network, the

recipient immediately decreases the reputation value of the sender by a small amount,

called reputation cost. However, once the message has been verified and added to

the blockchain, the sender’s reputation value increases by a margin larger than the

cost. This is to prevent agents from sending unauthorized messages and to prevent

possible DDoS attacks on the network. Agents constantly change the reputation

values of other agents over the network based on interactions in the network. Table

5.2 covers the reputation change for different messages in detail.
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Table 5.2: LSC messages and their reputation costs.

Message reputation Cost Details

RequestVote ✗ Candidates send this message during the election pro-

cess. This does not cost any reputation since we want

all agents to have a chance of winning without the risk

of constantly losing on reputation values.

StateChange ✓ Initiated and sent to L nearest agents, called valida-

tors. When a validator does not approve the state

change, either by observing or by insufficient reputa-

tion values, it will decrease the reputation value of the

origin agent as well as agents who signed it. However,

if the recipient approves the message and signs it, it

will increase the reputation value.

AppendBlock ✓ This message is initiated by the leader and is part of

the mining block. This message includes the signed

votes from the latest election. Agents will decrease

the reputation value of the sender in the case if the

signed votes are not valid.

CommitBlock ✓ This message can only be initiated by the leader after

the AppendBlock message was successful. Agents will

decrease the reputation value of the sender in the case

the included approvals are not valid.

Hearbeat ✗ This periodic message does not affect the reputation

value.
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Once a new block is committed on the blockchain, the reputation values of all

agents who originated and signed a StateChange message on the new block increases

as a reward in a process, called Block Reputation Increment where all agents

update the state of the changed data point on the new block.

5.5 TECHNICAL ANALYSIS OR OUR PROPOSED SOLUTION

We now evaluate the effectiveness and scalability of LSC followed by security analyses.

5.5.1 Effectiveness

The effectiveness of the protocol can be measured by the total amount of messages

that are sent among different agents on the network. LSC proposes a simple five-

message protocol to limit the total required bandwidth and memory per agent. The

most commonly used message over a group of agents is the StateChange message that

requires the signature of hi validators. With the total number of validators and the

total number of nearest agents L, we can easily calculate the maximum number of

messages required for a single validation process for agent i.

hi∑
k=1

Lk =
L− Lhi+1

1− L
(5.2)

For example, with L = 2 and hi = 5, the maximum number of messages to be sent

during this validation process is 62. To calculate the time complexity of the total

required StateChange messages, we will start by setting hi to be the expansion value

from Def. 6. Since we know that L > 1, we can calculate the time complexity to be

O(Lhi), which is the expected complexity from the geometric series and it depends

on the height of the tree, noted as hi.

5.5.2 Scalability - A Storage Analysis

The generic assumption of the blockchain is that each agent can read a committed

block and update the data point with the new state data. When a new block is
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Figure 5.4: Required memory for chains with different Lt values.

committed, it is under the assumption of the LSC protocol that each agent stores the

new block along with all previous blocks back to genesis. This assumption, however,

can have some issues especially when working with systems that can have limited

memory capacity. This issue creates a scalability issue if the system is required to

operate for a long period of time with many agents.

The memory requirement of each agent depends on the state-change content, the

number of state changes per block, and how frequently a new block is mined. More

agents means more validators for any state change. As definition 6 shows, an increase

of n increases the value of hi.

Let us denote the size of the state change message as Stw, number of state changes

per block as St, and the weight of the block header as Hw. A single block weight Bw

can be calculated as follows [130]:

Bw =
St∑
j=0

Stjw +Hw (5.3)

Next, from experimental evaluation, we know that the weight of a single StateChange

message (Stw) is ≈ 1 KB, header (Hw) is ≈ 2 KB, and an average of 200 StateChange

messages can be added per block. This value is averaged by the amount of data

a single agent can receive and handle. From (5.1), we can then calculate the total

memory requirement for a single block to be ≈ 200 KB. Next, let us denote the
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length of the leadership term as Lt. This value depicts how fast a new block is added

to the chain. Different Lt values can drastically increase or decrease the weight

of the LSC chain. Figure 5.4 shows the exponential growth in memory size when

increasing Lt. Agents are then required to hold more than 2 GB of chain data per

day on average, which can cause a problem for resource-constrained devices that are

required to operate for a long period of time. This problem, however, can be addressed

in either two ways:

1. Store the blockchain data on a dedicated cloud server. Agents can operate

by utilizing their private-keys for reading and mining. The cloud data can be

hashed and stored for chain validation processes.

2. Set a group of dedicated full-node agents who hold the full chain, unlike regular

agents who hold only a snapshot of the chain.

5.5.3 Security Analysis

This section described security analysis of LSC while also explaining the different

security restrictions that have been added to the protocol. For this protocol to func-

tion, we have to assume there are enough honest users on the network. This number

depends on the total number of users, as well as the average number of validators per

message. Below is the formal definition of the honest majority assumption.

Definition 7 (Honest Majority) Suppose n total number of users on the network,

T is the average reputation value of the network and H is the average number of

validators per StateChange message. The total number of malicious users on the

network Γ is calculated by:

Γ < (n− T )× (1− H

n
)

False Validation Attack. Validators are essential for the protocol to function

properly. The number of validators per StateChange message h is determined by the
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reputation value and the total number of users. This value is usually small, since it

only requires a local consensus. This means that a small number of users can gather

and send a false state change message only to have their trust value increase in the

Block Reputation Increment process. However, it can be easily detected as the data

is written on the chain, and can be accessed by anyone when a malicious activity is

suspected. Once recognized, it is then easy to isolate and disregard any previous data

made by that group. An immediate solution to this attack can be assigning a special

trusted validator to a given set of data points. This validator’s signature is required

for any StateChange message that is sent regarding any data point in the designated

set. It can easily be implemented in a trusted blockchain environment.

Partitioning. Partitioning can happen when a group of users is separated from

the main group, by natural or malicious means. The partitioned group can miss a

new leader election, new blocks committed and state changes. This problem, however,

is solvable by design. A partitioned group of users will not receive any heartbeat

messages, causing them to start a separated leader election process, followed by a

separated state change and block mining. Once the partition is removed, a user in

the partitioned group might see two different chains - the one from the main group and

the other from the partitioned group. A user will always follow the chain with the

higher block number, so any state changes that were added to the shorter blockchain

will be removed. Any data point’s state that has been removed is likely to be added

at a later point, as long as the state is different from the latest state on the chain.

Block Withholding Attack. Block withholding can occur when the current

leader does not publish the latest block in time. Once a new block is mined, par-

ticipants can update the data point’s state to reflect the state on the blockchain.

Validators are also rewarded with increased trust value. When a leader holds the

block, he is taking a risk of having his trust value reduced significantly, making it

unlikely for him to ever be elected as the leader again. Block withholding within the
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network can be easily detected by any user who does not receive an AppendBlock mes-

sage within the leadership term period. The effect of not publishing a block in time

can be a momentary delay in the state update, however, the state will be updated on

the next block with a different leader.

Impersonation Attack. Impersonating a user on the network can have a major

negative effect. It can change the leader votes, unvalidate data and more. However,

this attack is not possible in the LSC because of the nature of the permissioned

network and the registration process. Any communication is required to be signed

with the sender’s private key pk. This prevents any malicious impersonation activity.

On the other hand, if a user gets a hold of a different user’s private key, it can easily

impersonate that other user. This problem is true for any other system that relies on

private-public key encryption.

Distributed Denial of Service Attack. Distributed Denial of Service attack is

a very common attack on systems that rely on communication. In general, this attack

is an adversarial attempt to disrupt the normal activity of other users by sending

frequent messages to overwhelm and cause a traffic jam in the communication. In

LSC, any message is being ’priced’ with some trust value. This means that a malicious

user’s trust value will decrease as long as it continues sending messages. Once a trust

value reaches the lower threshold for a different user, any other message sent by him

will be immediately dropped, stopping it from overwhelming the network.
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CHAPTER 6

CONCLUSIONS

This section summarizes the contribution accomplished in this dissertation. Two

innovative consensus algorithms were presented that are used for achieving consensus

on information shared between party members. We have studied the problem of

implementing decentralized solutions in a dynamic environment with dynamic state-

change data points, and we presented the idea of ’localized consensus’ to achieve a

faster partial consensus over a subset of users in the network.

1. Paper [7] presents a modification of Raft consensus algorithm for information

sharing between users while handling malicious nodes. Digital signature is used

with encrypted PRCs to support operative communication. ISRaft is imple-

mented in C programming language and tested on multiple servers.

2. Paper [8] expands the original ISRaft to support implementation in autonomous

units in a secure data sharing environment. This protocol utilizes trust and

reputation values and can validate the shared data by comparing it between

users on the network.

3. Paper [9] presents a new information consensus algorithm for an immense and

highly dynamic environment using localized consensus. Similar to the previous

ISRaft, this consensus algorithm is also capable of validating and authenticating

the content of the shared data by first initiating a local consensus using cryp-

tographic communication means including trust and reputation values. The

new consensus algorithm, LSC, assures confidentiality, integrity and validity of

messages on the blockchain among all agents.
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6.1 FUTURE WORK

This dissertation presents two innovative consensus algorithms called ISRaft and Lo-

calized State-Change (LSC). Both have many applications and can be implemented

in many fields. Combining these algorithms with Autonomous units has proven to be

extremely compatible due to the nature of autonomous units and their applications.

While much of the work for this dissertation is already completed, there is still sig-

nificant work to be made. This section presents some topics that could be of interest

for future research.

� The proposed schemes use a basic definition of trust and reputation values,

however this can be expanded to include other protocols for stronger trust and

reputation computation. Also, we did not discuss possible attacks on these trust

and reputation systems. It is also possible to implement solutions that make it

have a stronger resistance to these types of attacks.

� There is a potential for using secure multi-party computation to build fully

localized consensus protocols. LSC uses an L-tree data structure to support

localized consensus, yet it is possible to share the information via MPC thus

adding another layer of security to the shared data.

� The implementations presented in this dissertation are on a small scale and

operate in a ’clean’ environment. It is important to test the capabilities of the

algorithms on a large scale implementation that includes a dynamic environment

and malicious nodes.

� Many blockchain implementations use cryptographic primitives that are not

quantum resistance (QR). ISRaft and LSC consensus use digital signatures, for

example, that are considered less secure in the presence of quantum computers.

It is possible to improve the quantum security of the proposed schemes by
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integrating primitives that are quantum safe, such as the Quantum Digital

Signature (QDS).
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